Winter term 2015/16 Dr. U. Brenner

Linear and Integer Optimization Assignment Sheet 7

- 1. Define $||A|| := \max_{||x||=1} ||Ax||$ for $A \in \mathbb{R}^{n \times n}$, where $||\cdot|| : \mathbb{R}^n \to \mathbb{R}$ is the standard Euclidean norm. Prove:
 - (a) ||A|| is a norm
 - (b) $\|aa^T\| = a^Ta$
 - (c) $||A|| = \max\{x^T A x \mid ||x|| = 1\}$ if A is positive semidefinite
 - (d) $||A|| \le ||A + B||$ if A and B are positiv semidefinite (2+2+2+2 points)
- 2. Show that $|\det(A)| \leq \prod_{i=1}^{n} ||a_i||$ for an $n \times n$ -matrix A with columns a_1, \ldots, a_n (where $\|\cdot\| : \mathbb{R}^n \to \mathbb{R}$ is again the standard Euclidean norm). (3 points)
- 3. A semidefinite program is an optimization problem

min
$$C \star X$$

 $A_i \star X \leq b_i$ $\forall i = 1, \dots, m$
 $X \succeq 0$
 $X \in \mathbb{R}^{n \times n}$

where C, A_1, \ldots, A_n are matrices, $A \star X := \sum_{1 \leq i,j \leq n} a_{ij} x_{ij}$ and $X \succeq 0$ means that X is symmetric and positiv semidefinite.

- (a) Show that the set $\{X \in \mathbb{R}^{n \times n} \mid X \succeq 0\}$ is a closed cone.
- (b) Construct a polynomial-time separation oracle for this set. (You may assume that you can compute basic arithmetic operations on real numbers, including square roots, exactly and in constant time.) (4+4 points)
- 4. Consider the following optimization problem:

$$\min \frac{(c^t x)^2}{d^t x}$$

s.t. $Ax \ge b$
 $x \ge 0$

where $c, d \in \mathbb{R}^n$, $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$ are given such that $d^t x > 0$ for any $x \in \mathbb{R}^n$ with $Ax \ge b$ and $x \ge 0$. Show that this problem can be written as a semidefinite program (see the previous exercise). (6 points)

Hint: Replace the objective function by "k" (where k is a new variable) and add the constraint $k \geq \frac{(c^t x)^2}{d^t x}$.

Due date: Tuesday, December 15, 2015, before the lecture.