Winter term 2015/16 Dr. U. Brenner

Linear and Integer Optimization Assignment Sheet 6

- 1. Describe an algorithm for the following problem: Given a tree T, you have time O(|V(T)|) for some preprocessing. After the preprocessing, you should be able to compute for any two given nodes x and y of T in time $O(\text{dist}_T(x, y))$ the x-y-path in T. (4 points) **Remark:** This is a problem that has to be solved during the NETWORK SIMPLEX ALGO-RITHM when computing a fundamental circuit.
- 2. Let (G, u, b, c) be an instance of the MINIMUM-COST FLOW PROBLEM.
 - (a) Dualize the linear program formulation of the MINIMUM-COST FLOW PROBLEM that was presented in the lecture.
 - (b) Let (r, T, L, U) be a feasible spanning tree structure for (G, u, b, c), and let f be the flow and π the potential associated to it. Show by considering the complementary slackness constraints that f is optimum if $c_{\pi}(e) \ge 0$ for all $e \in L$ and $c_{\pi}(e) \le 0$ for all $e \in U$. (3+3 points)

Remark: The statement in (b) has already been proved in a different way in the lecture (see Proposition 37 of the lecture notes).

3. Consider the following linear program:

$$\min \sum_{i=1}^{n} c_i x_i$$

s.t.
$$\sum_{i=1}^{n} a_i x_i = b$$
$$x_i \leq 1 \quad \text{for } i = 1, \dots, n$$
$$x_i \geq 0 \quad \text{for } i = 1, \dots, n$$

(a) Describe a simple and efficient feasibility test for the problem.

(b) Give an algorithm with running time $O(n \log n)$ that finds an optimum solution. (5 points)

4. Proof that for $r_1, \ldots, r_n \in \mathbb{Q}$, we have

(a) size
$$\left(\prod_{i=1}^{n} r_{i}\right) \leq \sum_{i=1}^{n} \operatorname{size}(r_{i})$$

(b) size $\left(\sum_{i=1}^{n} r_{i}\right) \leq 2 \sum_{i=1}^{n} \operatorname{size}(r_{i})$ (1+1 points)

Due date: Tuesday, December 8, 2015, before the lecture.