Linear and Integer Optimization
Assignment Sheet 6

1. Describe an algorithm for the following problem: Given a tree T, you have time $O(|V(T)|)$ for some preprocessing. After the preprocessing, you should be able to compute for any two given nodes x and y of T in time $O(\text{dist}_T(x,y))$ the x-y-path in T. (4 points)

Remark: This is a problem that has to be solved during the network simplex algorithm when computing a fundamental circuit.

2. Let (G,u,b,c) be an instance of the MINIMUM-COST FLOW PROBLEM.

 (a) Dualize the linear program formulation of the MINIMUM-COST FLOW PROBLEM that was presented in the lecture.

 (b) Let (r,T,L,U) be a feasible spanning tree structure for (G,u,b,c), and let f be the flow and π the potential associated to it. Show by considering the complementary slackness constraints that f is optimum if $c_\pi(e) \geq 0$ for all $e \in L$ and $c_\pi(e) \leq 0$ for all $e \in U$. (3+3 points)

Remark: The statement in (b) has already been proved in a different way in the lecture (see Proposition 37 of the lecture notes).

3. Consider the following linear program:

 $$\min \sum_{i=1}^{n} c_i x_i$$

 s.t. $\sum_{i=1}^{n} a_i x_i = b$

 $$x_i \leq 1 \quad \text{for } i = 1, \ldots, n$$

 $$x_i \geq 0 \quad \text{for } i = 1, \ldots, n$$

 (a) Describe a simple and efficient feasibility test for the problem.

 (b) Give an algorithm with running time $O(n \log n)$ that finds an optimum solution. (5 points)

4. Proof that for $r_1, \ldots, r_n \in \mathbb{Q}$, we have

 (a) $\text{size} \left(\prod_{i=1}^{n} r_i \right) \leq \sum_{i=1}^{n} \text{size}(r_i)$

 (b) $\text{size} \left(\sum_{i=1}^{n} r_i \right) \leq 2 \sum_{i=1}^{n} \text{size}(r_i)$ (1+1 points)

Due date: Tuesday, December 8, 2015, before the lecture.