
Winter term 2015/16 Research Institute for Discrete Mathematics
Prof. Dr. Stephan Held University of Bonn
Prof. Dr. Jens Vygen
Pascal Cremer

Combinatorial Optimization

Programming Exercise 2

Implement the Minimum Mean Cycle Algorithm from exercise 6.4.

Program Specification: Your program must accept a filename as a command-line
parameter (i.e. it must be called with myprogram input.dmx). The command-line
parameter contains the filename of the file that encodes the graph.

Input: The input file is a DIMACS file that encodes a weighted undirected graph.
That means, one line has the format

p edge n m
where n is the number of vertices of the graph and m is the number of edges. After
this line, m lines have the format

e i j c
where i and j are the indices of the vertices connected by this edge and c is the weight
of the edge. The vertices are indexed from 1 to n. Lines starting with a c are com-
ments and should be ignored. For a more complete definition of the DIMACS format,
see http://www.or.uni-bonn.de/lectures/ss12/praktikum/ccformat.pdf.

Output: Your program must write the mean weight of a minimum mean cycle to
the standard output, followed by a minimum mean cycle (in the DIMACS format).
More precisely, the first line of the output must consist of exactly one integer, which
has to be the cost of an optimum solution. The rest of the output, starting from the
second line, must encode the minimum mean cycle as a graph in DIMACS format,
including the first line of the format p edge n m.

Perfect Matchings: To compute minimum-weight perfect matchings, you may use exi-
sting graph libraries like Lemon (http://lemon.cs.elte.hu/trac/lemon) or Blos-
som V (http://pub.ist.ac.at/~vnk/software.html). We provide source code for
an example program that reads a DIMACS graph and computes a minimum-weight
perfect matching with Blossom V at http://www.or.uni-bonn.de/lectures/ws14/
co_uebung_ws14.html. Note that Blossom V crashes when the input graph does not
have a perfect matching. However, you may also use your own implementation of a
MWPM algorithm.

Instances: Test instances, but no optimal solutions, are provided together with the
example code.



Programming Languages: Your program must be written in C or C++ and compile
with a GNU compiler on a current Linux machine.

Criteria: The following criteria are relevant for the number of points you will be awar-
ded: Correctness, speed, code documentation, number of compiler warnings, overall
elegance, standard compliance. Note that we use the -Wall, -Wextra and -pedantic
compiler flags and use Valgrind to check your program for memory corruptions.

Submission: Send your program to cremer@or.uni-bonn.de. Make sure to attach
a shell script compiling your program into a binary.

(20 Points)

Information: Note that participation criteria require both at least 50% of the achie-
vable points in the theoretical exercises as well as 50% of the achievable points in
the programming exercises.
Deadline: Tuesday, December 22, 2015, 2 pm.


