Winter term 2015/16 Prof. Dr. Stephan Held Prof. Dr. Jens Vygen Pascal Cremer

Combinatorial Optimization

Exercise Sheet 12

Exercise 12.1:

Let $f: 2^U \to \mathbb{R}$ be a submodular function. Let R be a random subset of U, where each element is chosen independently with probability $\frac{1}{2}$. Prove:

- (a) $\mathbb{E}(f(R)) \ge \frac{1}{2}(f(\emptyset) + f(U)).$
- (b) For each $A \subseteq U$ we have $\mathbb{E}(f(R)) \ge \frac{1}{4}(f(\emptyset) + f(A) + f(U \setminus A) + f(U))$.
- (c) If f is nonnegative, then $\mathbb{E}(f(R)) \geq \frac{1}{4} \max_{A \subseteq U} f(A)$.

Note: Part (c) implies a randomized 4-factor approximation algorithm for (nonnegative) submodular function maximization. This problem cannot be solved optimally with a polynomial number of oracle calls. (4 Points)

Exercise 12.2:

Show that if we place the randomized step in the SIMPLE SUBMODULAR FUNCTION MAXIMIZATION ALGORITHM by setting $A := A \cup \{i\}$ if $\Delta_A \ge \Delta_B$ and $B := B \setminus \{i\}$ otherwise yields a 3-approximation (deterministically, in linear time). (4 Points)

Exercise 12.3:

Consider the problem of finding an extreme point in the polytope defined in the proof of Buchbinder and Feldmann's deterministic polynomial-time 2-approximation algorithm for the problem of maximizing a nonnegative submodular function.

- (a) Replace one of the two nontrivial constraints by an objective function. Use this to show that there is an extreme point in which at most one variable has a fractional value.
- (b) Show how to solve the LP resulting from (a) in $O(n \log n)$ time (note that $|T_{i-1}| = O(n)$).

(4 Points)

Continued on next page.

Exercise 12.4:

For any METRIC TSP instance (K_n, c) , show that the integrality gap of the subtour-LP is at most $\frac{3}{2}$. The subtour-LP is given by

$$\min \sum_{e \in E} c_e x_e$$

s.t. $x_e \in [0, 1]$ $(e \in E(K_n)),$
$$\sum_{e \in \delta(v)} x_e = 2$$
 $(v \in V(K_n)),$
$$\sum_{e \in E(K_n[X])} x_e \leq |X| - 1$$
 $(\emptyset \neq X \subset V(K_n)),$

and the integrality gap of a linear program is defined as the ratio of the cost of an optimum integral solution to the cost of an optimum (potentially fractional) solution. *Hint:* Recall Christofides' Algorithm. Show that for any vector x in the subtour polytope, $\frac{1}{2}x$ is in the *T*-join polyhedron for every even set *T*. (4 Points)

Deadline: Tuesday, February 2, 2015, **before** the lecture. **Information:** Submissions by groups of up to **three** students are allowed.