Combinatorial Optimization

Exercise Sheet 11

Exercise 11.1:
Let $f : 2^E \rightarrow \mathbb{R}$ be a submodular function with $f(\emptyset) = 0$. Prove:

$$\min \{ f(X) : X \subseteq E \} = \max \left\{ \sum_{u \in E} z(u) : z \leq 0, z(A) \leq f(A) \quad (A \subseteq E) \right\}$$

$$= \max \left\{ \sum_{u \in E} \min \{0, y(u)\} : y(A) \leq f(A) \quad (A \subseteq E), y(E) = f(E) \right\}.$$ (3 Points)

Exercise 11.2:
Let $f : E \rightarrow \mathbb{R}$ with $f(\emptyset) = 0$ be a submodular function and x^* a minimizer of

$$\min \sum_{e \in E} x(e)^2$$

subject to $x \in B(f)$,

where $B(f)$ is the base polyhedron of f. Let

$$y^* : E \rightarrow \mathbb{R}, e \mapsto \min \{x^*(e), 0\}$$

$$A_- := \{ e \in E \mid x^*(e) < 0 \},$$

$$A_0 := \{ e \in E \mid x^*(e) \leq 0 \}.$$

Show that

(i) y^* maximizes $\{ \sum_{u \in E} y(u) : y \leq 0, y(A) \leq f(A) \quad (A \subseteq E) \}$,

(ii) A_- is the unique minimizer of f and A_0 is the unique maximal minimizer of f. (3 Points)

Continued on next page.
Exercise 11.3:
Prove that the set of vertices of the base polyhedron of a submodular function \(f : 2^E \to \mathbb{R} \) with \(f(\emptyset) = 0 \) is precisely the set of vectors \(b^\prec \) for all total orders \(\prec \) of \(E \), where
\[
b^\prec(e) := f(\{v \in E : v \preceq e\}) - f(\{v \in E : v \prec e\}) \quad (e \in E).
\]

(3 Points)

Exercise 11.4:
Let \(G = (V,E) \) be an undirected graph. For a set \(X \subseteq V \) let \(f(X) \) denote the number of edges in \(E \) with at least one end point in \(X \).

(i) Prove that \(f \) is a submodular function.

Let \(y : V \to \mathbb{N} \) be a function. We want to find an orientation of \(G \) (i.e. a directed graph \(G' = (V',E') \) such that \(V' = V \) and the underlying undirected graph is equal to \(G \)) such that \(|\delta^-(v)| = y(v) \) for each \(v \in V \).

(ii) Show that such an orientation exists if and only if
\[
y(V) = |E| \quad \text{and} \quad y(X) \leq f(X) \quad \forall X \subseteq V.
\]

Hint: Construct a network \((V',E',u)\) with
\[
V' := E \cup V \cup \{s,t\},
E' := \{(s,e) \mid e \in E\} \cup \{(e,v) \mid e \in E, v \in e\} \cup \{(v,t) \mid v \in V\}
\]
and a suitable capacity function \(u \).

(iii) Give a polynomial time combinatorial algorithm which either finds an orientation as desired or a set \(X \subset V \) which serves as certificate that such an orientation does not exist.

(iv) Consider the following alternative algorithm: The question if an orientation with the required property exists can be answered by using Schrijver’s algorithm to find a set \(X \) minimizing the submodular function \(f(X) - y(X) \). If this minimum is negative return the minimizer \(X \) as there is no orientation as desired. Otherwise start with \(G' = (V,\emptyset) \). For each edge \(e = \{v, w\} \in E(G) \), set \(G' := G' + (v, w) \), \(G := G - e \), and \(y(w) := y(w) - 1 \) if there is an orientation satisfying \(|\delta^-(v)| = y(v) \) for each \(v \in V \) for \(G - e \) after decreasing \(y(w) \) by 1, otherwise set \(G' := G' + (w, v) \), \(G := G - e \), and \(y(v) := y(v) - 1 \).

Proof the correctness of this algorithm and compare its runtime to the runtime of your algorithm from part (iii).

(1+3+1+2 Points)

Deadline: Tuesday, January 26, 2015, before the lecture.
Information: Submissions by groups of up to three students are allowed.