Delay Optimization of Linear Depth Boolean Circuits
with Prescribed Input Arrival Times

Dieter Rautenbach, Christian Szegedy and Jiirgen Werber
Forschungsinstitut fiir Diskrete Mathematik
Lennéstr. 2, D-53113 Bonn, Germany
{rauten,szegedy,werber }@or.uni-bonn.de

Abstract. We consider boolean circuits C over the basis Q = {V, A} with inputs z;, zo,...,
x, for which arrival times t1, 1, ..., 1, € Ny are given. For 1 <4 < n we define the delay of
x; in C' as the sum of ¢; and the number of gates on a longest directed path in C starting
at z;. The delay of C' is defined as the maximum delay of an input.

Given a function of the form

f($1,9€2, oo xn) = 9n—1(%—2(---93(92(91(961, 962),963), 964)---,%—1),%)

where g; € Q for 1 < j <n—1 and arrival times for z;, zo, ..., Z,, we describe a cubic-time
algorithm that determines a circuit for f over €2 that is of linear size and whose delay is
at most 1.44 times the optimum delay plus some small constant.

Keywords. circuit; straight-line program; depth; delay; computer arithmetic; VLSI design

1 Motivation

The motivation for the present work is a problem in VLSI design. At one of the final stages
in the design process of a chip, the tool that performs the so-called static timing analysis
[2, 3, 4] detects paths of ‘negative slack’. These are paths on which the propagation of
the signal is too slow to guarantee the correct functioning of the chip. The analysis tool
reports these paths, which usually consist of a sequence of gates g1, go, -..g,, that perform
some elementary logical operation on their inputs (see Figure 1).

T2 T4 Zs Tn—2 Tn

PSP S Ot
T

x3 Tn—1

Figure 1

The output of the final gate g, is a boolean function f(x1, ..., z,) of the inputs. If we are
given an arrival time, say t(z;), for each input z; and a delay, say d(g,), for each gate g;,

1

then static timing analysis will determine the arrival time of the output of gate g,,, i.e. the
time at which the evaluation of f terminates, as the maximum, over all paths from an input
x; to the output of g,,, of the sum of t(x;) and all gate delays along the path. If for example
for the path in Figure 1, m = 3, ¢; is a 3-and, g5 is a 2-or and g3 is a 2-nand (for undefined
terminology we refer to [8] or [11]), then f(z1,zo,x3, 24, 25) = =(((x1 Az AT3) V 24) A T5)
and the evaluation of f terminates at

max {t(z1) +d(g1) +d(g2) +d(gs), t(z2) + d(g1) + d(g2) + d(g3),
t(x3) +d(g1) +d(g2) +d(gs), t(zs) +d(g2) + d(gs),t(xs) +d(gs)}.

In order to guarantee that the chip works correctly, we have to find a faster representation
of f. This leads us to the algorithmical problem which we state more precisely in the next
section.

2 Problem

We consider boolean circuits [8, 11] over the basis 2 = {V, A} whose elements have fan-in
2 for functions f: {0,1}" — {0,1} of the form

f($1,332,---,$n) = gnfl(%4(---93(92(91(%1,$2),$3),$4)---,$n71),$n) (1)

where g; € Q for 1 < j <n—1. Clearly, (1) immediately leads to a circuit as in Figure 1.

If we are given a non-negative integer arrival time t; € Ny = {0, 1, 2, ...} for input z; for
1 <4 < n, then we define the delay delay(x;) of z; in some circuit C as the sum of ¢; and
the number of gates on a longest directed path in C' starting at x;. The delay delay(C) of
C is defined as the maximum delay of an input in C. Given a function f and arrival times
as above, we denote the minimum delay of a circuit for f by delay(f). For some first and
fundamental results on this notion of delay we refer the reader to [7].

There is a simple lower bound on the achievable delay extending a classical observation
of Winograd [12].

Lemma 1 If f : {0,1}" — {0, 1} is computable over 2 and dependent on each of its inputs
T1,To, ..., T,, which have arrival times t1,1s, ...,t, € Ny, then

delay(f) > [logZ @ 2“” . 2)

Proof: For 0 < i < delay(f) let n; = {1 < j < n | t; = delay(f) — i}|. Clearly,
delay(f) > max{t; | 1 <4 < n} and thus ng + ny + ... + Ngelay(s) = N-

Let C be a circuit for f over Q of delay delay(f). Let Ty be a breadth-first search tree
of C rooted at the output gate of C'. By repeatedly attaching new leaves to the leaves of
Ty, we obtain a rooted binary tree that has at least n; leaves at distance ¢ from the root for

each 0 < i < delay(f). The existence of such a tree is equivalent to the following sequence
of inequalities.

0 S 1— o
0 < 2(1-ng)—m
0 S 2(2(1—710)—77,1)—712
delay(f) . n
0 < 2dela}'(f) _ Z Q(delaY(f)—J)nj — Qdfﬂa)’(f) _ Z oti
=0 i=1

Obviously, each inequality is implied by the next inequality and from the final inequality
we obtain (2). O

n n
Note that if f(xq1,z9,...,2,) = V x; or f(x1,Z9,...,2,) = A Z;, then a tree as considered
.71 y —

1= 1=
in the above proof immediately leads to a circuit for f of minimum delay and can obviously
be constructed in polynomial time (see [7]).

Our main result is a cubic-time dynamic programming algorithm that produces a circuit
for functions f as in (1) whose delay is at most about 1.44 times the value of the lower
bound (2). We describe this algorithm first for the function fy : {0,1}** — {0,1} with

fo(x1, y1, 2, Y2y ooy Ty Yn) = (- (1 Ay1) VE2) Aya) Vo) V) A e (3)

The function f; is known in computer arithmetic [9, 10]. It can be used to perform
the carry-bit calculation for the addition of two m-bit binary numbers. As part of their
circuits for addition Brent [1] and Khrapchenko [5] both described circuits for f, of depth
log,(n)+0O (log, (n)) (cf. also [6]). Nevertheless, their original constructions and analysis
hardly generalize to the case of arrival times and would certainly not lead to polynomial
time algorithms. In this context we mention the very recent work [13] where a heuristic
approach for the construction of an adder is presented taking arrival times into account.

In Section 3 we first describe the algorithm for functions as in (3). In Section 4, we analyse
the delay of the circuits constructed in Section 3. In Section 5, we describe the algorithm
for functions as in (1) and state the main result. Finally, in Section 6 we make some
concluding remarks.

3 Algorithm for f; as in (3)

For 1 <1 <n —1 the function f, satisfies the following identity.

fO(xlaylax%y?a"'amnayn)
= ((..((x1 Ay1) Vo) ANy2) V oo)) V) A Y,

3

((-((((x1 Ayr Ay2) V(Z2 Aya)) Vx3) Ays)...) V Zy) A Yn

borhe)
(e (1) (8 (1)

fO(‘rlayla-- xlayl (/\ y])) VfO xl-}—layl—f-l:"'axnayn)' (4)
Jj=

=Il+1

I
<ls i
I>§

A

~.

I
o~ |l

Note that we commit a small abus de langage using ‘ fy” to denote formally different func-
tions. We now describe the algorithm for fj.

Algorithm I
Input: Integers n € N = {1,2,...} and ¢y, s1, t2, Sa, ..., tn, $Sn € Np.
Output: A circuit Cy(t1, s1,t2, S2, ...; tn, Sp) over with inputs zi,yy, ..., Zn, y, that has

the two outputs fo(z1,y1, T2, Y2, -y Tn, Ypn) and Nj—1 Y-

In what follows, we use t; as the arrival time for z; and s; as the arrival time for y;
for 1 < ¢ < n. Furthermore, we denote the subcircuit of Cy(ty,...,s,) that computes
fo(®1,--syn) by Co ,(t1, -, 8,) and the subcircuit of Cy(t1, ..., s,) that computes Aj_; y;

by C(),/\(tl, ceey Sn).

Step 1
If n =1, then let the circuit Cy(t1, s1) be as in Figure 2.

1 N

1 A
Figure 2 Co(tl, 81)

Step 2
If n > 2, recursively construct Cy(t1, ..., s,) using Cy(t1, ..., ;) and Cy(ti41, -.., $p) for
some 1 <[<n —1 such that

max{delay(Co,fO (tl, ceny Sl)) + 1, delay(Co,fO (tl—i—l; ceey Sn))}
is minimized.
The output of Cy f,(1, ..., Sn) is calculated exactly as in (4) with one A-gate and one

V-gate using the output of Cj j,(t1, ..., s1), the output of Co s, (ti41,-.., 5,) and the
output of Co a(ti11, .-, Sn)-

Furthermore, the output of Cya(t1, ..., s,) is calculated with one A-gate using the
output of Cy(t1,...,s;) and the output of Cya(ti41,...,8,). See Figure 3 for an
illustration.

fo@i,m) Njmy i fo@imas o yn) Njoipa Y5

fO(xl; Jyn)

Figure 3 C(z1, ..., Yn)

We collect some observations in the following lemma.

Lemma 2
(i) Algorithm I works correctly.
(ii) The number of V- or A-gates in Cy(t1, ..., s,) is 4n — 3.

(11i) In Cy(t1, ..., Sn) all inputs have fan-out at most 3 and all A- or V-gates have fan-out
at most two.

(iv) delay(Cy 5, (t1, s1)) = max{ti,s1} + 1.
(v) delay(Co a(t1, ..., 5n)) < delay(Cy g, (t1, -, 5n)) — 1.

(vi) delay(Cy s, (t1, ..., Sn)) equals

1<rlrii713_1 max{delay(Co,, (1, ..., s1)) + 2,delay(Co, s (ti+1, -, 5n)) + 1}

(vii) Algorithm I can be implemented to run in cubic time.

Proof: (i) follows from (4). (ii), (iii) and (iv) are obvious. (v) follows easily by induction
and immediately implies (vi). (vii) follows, since Algorithm I only needs to calculate the

delays of the <g)

by (iv) and (vi). This can clearly be done in cubic time. O

circuits Co s, (i, Si, ..., £, 8;) for 1 < i < j < n using the recursion given

In order to analyse the quality of the construction we study the recursion in Lemma 2 (iv)
and (vi) in the next section.

4 Growth

For n > 2 and non-negative integers a, b, a1, b1, ..., a,, b, € Ny let Dy be defined recursively
by

Do(a,b) = max{a,b}+1 (5)
Do(a1,b1, ...y an, by) = 1<Ilrii71ll_1max{7)0(a1, b1, ooy, by) + 2, Do(ar1, big1, vy Gy b)) + 1}

Clearly, this corresponds to the recursion in Lemma 2. If we define D; similarly by

Di(a) = a (6)
Di(a1,...;a,) = min max{Di(a1, ..., a;) + 2,D1(ay1,---, an) + 1},
1<I<n—1
then the following properties are immediate. In order to simplify our notation we write

(A, B) to denote the vector (ay,as,...,an,,b1,b2,...,b,,) where A = (a4, a9, ...,a,,) and
B = (bl,bg,...,an).

Lemma 3 Let a,a1,as, ..., 0, @}, @, ..., a), b1, ba, ..., b, € Ny be such that a; < a for 1 <
i <n. Let A € Ni* and B € Ng? with ny +ng > 1. Then

(i) Do(ay, by, ..., an, by) = Di(max{a, b1} + 1, max{ag, bo} + 1, ..., max{a,, b, } + 1),
(ii) D1(a1 + a,as + a, ..., an + a) = Di(a1, a9, ..., ay) + a,
(11i) D1(aq, az, ..., an) < Di(a}, dl, ...,al) and

(ZU) Dl(A, B) S Dl(A,G,, B)

Before we proceed to the analysis, we give a combinatorial interpretation for D;. Let n
non-negative integers ay, as, ..., a, € Ng be given. We consider a rooted binary tree T' with
root r and exactly n leaves uq,uo, ..., u,. For every non-leaf v in 7" one of the two edges
from v to its children is assigned a length of 1 whereas the other edge is assigned a length
of 2.

The vertices u, us, ..., u, are ordered in such a way that for 1 < ¢ < j < n the last
edge on the path from u; to the closest common ancestor u' of u; and u; has length 2
and, consequently, the last edge on the path from u; to v’ has length 1. If D denotes the
maximum over all 1 < ¢ < n of the sum of a; and the total length of the path from w;
to r, then Dy (ay, as, ..., a,) equals the minimum value of D over all such binary trees. See
Figure 4 for some examples of optimal trees where all edges of length 2 are pointing left.

as =0 a5=0

a1=0 a2=0 a3:0
a2:0 a3:0

a1:0 a2:0 a; =

a1:0 a2:1

a3:2 a4=3

Figure 4

Let F} denote the k-th Fibonacci number, i.e. Fy =0, F;y =1 and F,, = F,_1 + F,,_, for
n > 2. For k € N let Z(k) denote the vector of k zeros.

Lemma 4 Let k € Ny and l,n,m € N. Let A € Ny and B € Nj".
(i) max{i € N | D1(Z(i) < k} = Fyy1.
(ii) D1(A, 1) < Di(A, Z(Fi11)).
(iit) Di(l, B) < D1(Z(Fi42), B).
(ZU) Dl(Aa l: B) S Dl(Aﬂ Z(E+3 -]-): B)
Proof: (i) Let max(k) = max{i € N | D;(Z(i)) < k}. It is easy to verify that max(0) =1
and max(1) = 1.
By (6), for I > 2 we have D;(Z(l)) = max{D:(Z(l1))+2,D:1(Z(l2))+1} for some Iy, 15 €

N with l;+1; = [. This immediately implies the recursion max(k) = max(k—2)+max(k—1)
for k£ > 2 and thus we obtain max(k) = Fy, which completes the proof of (i).

(ii) For contradiction, we assume that (4, 1) is a counterexample of minimum length n + 1.
First, we assume that Dy (A, Z(F,41)) = max{D;(A1)+2,D:1(As, Z(F141))+1} for some
non-trivial A; and some Ay with (A, 45) = A.
If either A, is non-trivial or [> 2, then (6) and (i) or the choice of (A,1) imply the
contradiction

D1 (A, l) max{'Dl (Al) + 2, Dl(AQ, l) + 1}
max{D,(A;) + 2, D1 (Ay, Z(Fiy1)) + 1}

Di(A, Z(Fi14))-

IA A

7

If Ay is trivial (A; = A) and [=1, then Dy(A2,1) +1=D;(1) +1=2<D;(A;)+2 and
we obtain a similar contradiction.
Therefore, there is some 1 < r < F;,; — 1 such that

Dl(A, Z(ﬂ+1)) = max{Dl (A, Z(E+1 - 7')) + 2, Dl(Z(T’)) +].} (7)

By (6), we have D;(A,[l) < max{D;(A) +2,] + 1}.
If Di(A) + 2 >1+1, then (7) implies the contradiction

Di(A,1) < Dy(A) +2 < Di(A, Z(Fin — 1)) + 2 < Di(A, Z(Fiin)).

Hence [+1 > D;(A) +2 and Dy(A,1) <1+1.
If » > F; + 1, then (i) implies the contradiction

Di(A)<I+1<Di(Z(F,+1)+1<Di(Z(r))+1 <Di(A4, Z(F11)).
Therefore, r < F, which implies F;,; —r > F,_;. Again by (i), we obtain the contradiction
Dy(A)l) <I+1<D(Z(Fi-1+1))+2 <Dy(A, Z(F_1)) +2 <Dy(A, Z(Fi14)).

This final contradiction completes the proof of (ii).

(iii) This proof is very similar to the proof of (ii) and we just include it for the sake of
completeness. For contradiction, we assume that ([, B) is a counterexample of minimum
length 1 + m.

As before, this implies that there is some 1 < r < Fj, 5 — 1 such that

Di(Z(Fiy2), B) = max{D:(Z(r)) + 2, D1(Z(Fiy2 — 1), B) + 1}. (8)

By (6), we have D;(l, B) < max{l + 2, D;(B) + 1}.
If Di(B)+1>1+2, then (8) implies the contradiction

Dl(l,B) S Dl(B) + 1 S Dl(Z(F1l+2 — T),B) + 1 S Dl(Z(E+2),B)

Hence [+2 > Dy(B)+ 1 and Dy (I, B) < 1+2.
If r > F; + 1, then (i) implies the contradiction

Di(l,B) <1+2<Di(Z(F,+1))+2<Di(Z(r)) + 2 < Dy(Z(F142), B).

Therefore, » < F; which implies Fj;o — r > Fj,;. Again by part (i), we obtain the
contradiction

Di(l,B) <1+2 < Di(Z(Fiy1 +1)) + 1 < Di(Z(Fi41), B) + 1 < Di(Z(Fi42), B).
This final contradiction completes the proof of (iii).

(iv) For contradiction, we assume that (4,1, B) is a counterexample of minimum length
n+1+m.

As before, this implies that there is some 1 < r < Fj,3 — 2 such that
Dl(A, Z(E+3 —].),B) = maX{Dl(A, Z(T‘)) + 2, DI(Z(E+3 —-1- 7'), B) +].} (9)
If r > F}44, then (6), (9) and (ii) imply the contradiction

Di(A,1,B) < max{Di(A,1)+2,D\(B)+1}

max{D; (A, Z(Fi+1)) +2,D:(B) + 1}

max{D;(A, Z(r)) +2,D1(Z(Fi45—1—r),B) + 1}
(

Dl (Aa Z B+3))

IA N IA

Therefore, r < F;,; — 1 which implies that Fj.3 — 1 —r > Fj5 and (6), (9) and (iii) imply
the contradiction

Dl(A,l,B) S max{Dl(A) +2 Dl(l B) + 1}
< max{Di(A4) +2,D:1(Z(Fi12), B) + 1}
< max{Di(A,Z(r))+2,D:(Z(Fi43—1—71),B) + 1}
(

Dl(Aa Z B+3))
This final contradiction completes the proof of (iv). O

Theorem 1 If ay,as,...,a, € Ny, then

M§ INNgh

Dl(alaa'Qa"'aa'n) S Dl <Z<

(Fis=)
%0) p

2‘“) + 2.

'3

Il

< logysn (
2

5

N
||M:~
I

~ 1l.44log, (

Proof: The first inequality follows immediately from Lemma 3 and Lemma 4 (iv).
k—2
By Lemma 4 (i), Di(Z(1)) = k implies that | > Fy > (¥51)" " for k € N and [€ N.
Therefore, D1(Z(l)) < logyss (1) + 2. Since Fj3 — 1 < 2 for i € Ny, the remaining
2

inequalities follow. O

Corollary 1 If a1, b1, a9, b, ..., a,, b, € Ng, then

DO(G’I: bla az, b27 -eey O, bn) < log@ (Z (2(11 + 2bl)> +3

1=

li (2% + 2”i)> +3.

=1

~ 1l.44log,

<

Proof: By Lemma 3 and Theorem 1, we obtain

DO(ala bla ag, b2a very Qg bn)
= Di(max{ai, b1} + 1, max{as, by} + 1, ..., max{a,, b, } + 1)
D:(max{ai, by }, max{as, by}, ..., max{a,, b,}) + 1

< logysia (Z 2max{“i’bi}> +3
2

i=1
< log@ (i (2“1’ + 2’%)) +3
i=1

and the proof is complete. O

5 Algorithm for f as in (1)

We now describe the algorithm for functions f as in (1).

Algorithm IT

Input: A function f with inputs 1, z, ..., Z, as in (1) specified by gates g1, g2, .--, gn_1 € 2
and an arrival time ¢(z;) for x; for 1 <7 < n.

Output: A circuit Cy for f over €.

Step 1

Set t; < t(z1) and s; « 0.

For 1 <i<mn—1sett < t(zir1) and s;41 « 0, if g; = V.
For 1 <31 <n-—1set ti+1 +— 0 and Sit1 t(.TH_l), if gi = A.
Step 2

Use Algorithm I to construct the circuit Co s, (1, 51, t2, S2, ..., tn, Sn) on the inputs zf,
2y, xb, xh,..., xl, 2! with arrival times ¢; for z} and s; for z/ for 1 < i < n.

Step 3
Set z < x; and zf « 1.
For 1 <i<n—1setxz;,, < x4 and 2}, « 1, if g; = V.

For 1 <i<n—1set ;< 0and i, < xiy1, if g = A.

Step 4
The circuit Cf arises from the circuit constructed so far by eliminating all constant
inputs using the relations xt VO0=2Al=z,2V1=1and A0 =0.

Lemma 5 Algorithm IT works correctly and can be implemented to run in cubic time.

10

Proof: Using the identities x Vy = (zVy) Al and z Ay = (zV 0) Ay, it is straightforward
to check that C; computes f (cf. Figure 5). Hence Algorithm II works correctly. Its time
complexity follows from the time complexity of Algorithm I and the fact that considering
each of the less than 8n — 3 V- or A-gates of Cy g, (t1, 51,12, 52, ..., tn, S,) ONCe in non-
increasing distance from the output gate, Step 4 can be done in linear time. O

Tit1 Tit1 Tit1

o
O -
-
oS

! n
Titq Tipq

Theorem 2

Figure 5

(1) If Cy s, denotes the circuit generated by Algorithm I for fy as in (3) given arrival times
for the inputs, then delay(Cy f,) < 1.44 delay(fy) + 3.

(it) If C; denotes the circuit generated by Algorithm II for f as in (1) given arrival times
for the inputs, then delay(C) < 1.44delay(f) + 4.44.

Proof: (i) This follows immediately from Lemma 1 and Corollary 1.

(ii) Using the same notation as above, we have
n n
> (2% +2%) <2y 2t
i=1 i=1

By Lemma 1 and Corollary 1, we obtain

delay(Cy) < delay(Cy g, (t1, s1,t2, S2, vy tn, Sn))

< 1.44log, (Z (2% + 2)) +3

i=1

< 1.44log, (222”0)

i=1
< 1.44log, (ZQt >+444
< 1l.44delay(f) +4.4

and the proof is complete. O

11

6 Conclusion

We have described a simple cubic-time algorithm for the construction of circuits for func-
tions as in (1) whose delay is at most 1.44 times the lower bound plus some small constant.

As we mentioned, the functions as in (3) are closely related to addition. As a conse-
quence, we can construct circuits over the basis {V, A, =} for the addition of two binary
n-digit numbers whose delay is at most 1.44 times the optimal delay plus some small con-
stant. Unfortunately, the number of gates of these circuits is quadratic in n. In [7] we
describe circuits for the same task whose delay is essentially at most twice the lower bound
and whose size is O(n log,(log,(n))).

In view of the motivation explained in the first section, it is obvious that many technical
details not contained in the mathematical abstraction can actually be incorporated in the
algorithm. This motivation is also the reason for controlling the number of gates and the
maximum fan-out.

References

[1] R. Brent, On the addition of binary numbers, IEEE Trans. Comput. 19 (1970), 758-759.

[2] R.B. Hitchcock, Timing Verification and the Timing Analysis Program, in Proc. 19th
IEEFE Design Automation Conference, 1982, 594-604.

[3] R.B. Hitchcock, G.L. Smith and D.D. Cheng, Timing Analysis of Computer Hardware,
IBM J. Res. Develop. 26 (1982), 100-105.

[4] N.P. Jouppi, Timing analysis for nMOS VLSI, in Proc. 20th IEEE Design Automation
Conference, 1983, 411-418.

[5] V.M. Khrapchenko, Asymptotic estimation of addition time of parallel adder, Syst. Th.
Res. 19 (1970), 105-122.

6] R.E. Ladner and M.J. Fischer, Parallel prefix computation, J. Assoc. Comput. Mach.
27 (1980), 831-838.

[7] D. Rautenbach, C. Szegedy and J. Werber, Fast Circuits for Functions whose Inputs
have Specified Arrival Times, manuscript (2003).

(8] J.E. Savage, Models of computation: exploring the power of computing, Reading, MA:
Addison Wesley Longman, 1998.

9] E.E. Swartzlander (ed.), Computer arithmetic. Vol. I, IEEE Computer Society Press,
1990, 378p.

[10] E.E. Swartzlander (ed.), Computer arithmetic. Vol. II, IEEE Computer Society Press,
1990, 396p.

12

[11] I. Wegener, The complexity of Boolean functions, Wiley-Teubner Series in Computer
Science. Stuttgart: B. G. Teubner; Chichester etc.: John Wiley & Sons., 1987.

[12] S. Winograd, On the time required to perform addition, J. Assoc. Comput. Mach. 12
(1965), 277-285.

[13] W.-C. Yeh, C.-W. Jen, Generalized earliest-first fast addition algorithm, IEEE Trans.
Computers 52 (2003), 1233-1242.

13

