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Abstract. Let C be a circuit representing a straight-line program on n inputs x1, x2, ..., xn.
If for 1 ≤ i ≤ n an arrival time ti ∈ N0 for xi is given, we define the delay of xi in C as the
sum of ti and the maximum number of gates on a directed path in C starting in xi. The
delay of C is defined as the maximum delay of one of its inputs.

The notion of delay is a natural generalization of the notion of depth. It is of practical
interest because it corresponds exactly to the static timing analysis used throughout the
industry for the analysis of the timing behaviour of a chip. We prove a lower bound on
the delay and construct circuits of close-to-optimal delay for several classes of functions.
We describe circuits solving the prefix problem on n inputs that are of essentially optimal
delay and of size O(n log(log n)). Finally, we relate delay to formula size.
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1 Introduction

We consider circuits representing straight-line programs and refer to [22] or [27] for basic
definitions. Every such circuit is a directed acyclic graph whose vertices have been identified
either with inputs, outputs or computation steps. The vertices identified with computation
steps are called gates. The functions evaluated by gates belong to a finite set Ω of functions,
which is called the basis. Two classical measures associated with a circuit C are its size
size(C), which is the number of its gates, and its depth depth(C), which is the maximum
number of gates on a directed path in C.

One of the main motivations to study circuits is VLSI design where the main opti-
mization issues are area consumption, power consumption and speed. Whereas size is
an appropriate measure for area and power consumption, the relation between depth and
speed is more problematic, since input signals may arrive at different times. The approach
used in the industry to analyze the timing behaviour of a chip is the so-called static timing
analysis [5, 6, 9], which computes estimates for the arrival times for all relevant signals on
a chip. This motivates the following definition.

Definition 1 Given a circuit C with inputs x1, x2, ..., xn and given an integer arrival time
ti ∈ N0 = N ∪ {0} = {0, 1, 2, ...} for xi for 1 ≤ i ≤ n, the delay of input xi for 1 ≤ i ≤ n

in C is defined as the sum of ti and the maximum number of gates on a directed path in C

starting at xi. The delay delay(C) of C is defined as the maximum delay of an input.
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This definition perfectly corresponds to the worst-case static timing analysis necessary to
guarantee correct functioning of a chip for all inputs: If we replace in Definition 1 the
maximum number of gates with the maximum accumulated gate delay, then delay(C)
equals the arrival time as calculated by static timing analysis. Therefore, this notion of
delay is more appropriate for practical application than average case notions [8].

Clearly, if C is a circuit for some boolean function f depending on the inputs x1, x2,...,
xn with arrival times t1, t2,...,tn ∈ N0, then

max{depth(C), max{t1, t2, ..., tn}} ≤ delay(C) ≤ depth(C) + max{t1, t2, ..., tn},

which implies that the delay of a minimum depth circuit for f is at most twice the optimum
delay. To some extent this remark justifies the use of circuits of small depth which are
mostly known for a long time (cf. e.g. [1, 11, 17, 23, 26]) to realize fundamental functions
such as addition or multiplication on a chip. Nevertheless, arrival time differences are
typically large compared to individual gate delays, and thus speed and reliability of a chip
can considerably be improved by taking arrival times into account. For some few first
attempts to do so we refer the reader to [4, 10, 15, 25] and [29].

Whereas circuits of minimum depth often display a very regular structure, circuits of
minimum delay may look quite irregular even for simple functions. Therefore, apart from
having a purely practical motivation, the notion of delay leads to interesting theoretical
problems.

In the present paper we prove some fundamental results on the delay. In Section 2,
we prove a lower bound and construct circuits of close-to-optimal delay for some classes of
functions. In Section 3, we describe circuits solving the prefix problem on n inputs that
are of essentially optimal delay and of size O(n log(log n)). Finally, in Section 4, we relate
formula size and delay.

2 A lower bound and simple cases

First we extend a lower bound on the depth due to Winograd [28].

Proposition 1 If C is a circuit of fan-in at most r for some boolean function f depending
on the inputs x1, x2, ..., xn with arrival times t1, t2, ..., tn ∈ N0, then

delay(C) ≥
⌈

logr

(

n
∑

i=1

rti

)⌉

. (1)

Proof: The existence of a circuit C of fan-in at most r and delay T for f implies the
existence of a rooted r-ary tree with n leaves of depths (T − t1), (T − t2), ..., (T − tn) ∈ N0.

By Kraft’s inequality, such a tree exists if and only if
n
∑

i=1

r−(T−ti) ≤ 1 or, equivalently,

T ≥ logr

(

n
∑

i=1

rti

)

, and the proof is complete. 2
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Since a tree as considered in the proof of Proposition 1 can clearly be constructed in
polynomial time, the following result is immediate.

Proposition 2 Let ◦ : D2 → D be an associative and commutative operation on two
inputs defined on some domain D.

Then a circuit over the basis {◦} for the function x1 ◦x2 ◦ ...◦xn on inputs x1, x2, ..., xn

with arrival times t1, t2, ..., tn ∈ N0 whose delay matches the lower bound (1) for r = 2
exists and can be constructed in polynomial time.

It is a simple exercise — leading to an alternative proof of Proposition 2 — to show that
circuits of minimum delay for functions as in Proposition 2 can also be obtained by a greedy
algorithm that iteratively replaces two inputs, say xi and xj, of smallest arrival times ti
and tj with a new input of arrival time max{ti, tj} + 1. It is obvious that Proposition 2
and the greedy procedure generalize to r > 2.

The next theorem shows that the functions considered in Proposition 2 are essentially
the only ones for which we can always achieve a delay as in (1) for each arrival time
assignment.

Theorem 1 Let f be a boolean function depending on the inputs x1, x2, ..., xn.
For all assignments of arrival times ti ∈ N0 to xi for 1 ≤ i ≤ n there exists a circuit

for f of fan-in at most 2 with a delay that matches the lower bound (1) for r = 2 if and
only if either

f(x1, x2, ..., xn) = y1 ∧ y2 ∧ ... ∧ yn

or
f(x1, x2, ..., xn) = y1 ∨ y2 ∨ ... ∨ yn

or
f(x1, x2, ..., xn) = y1 ⊕ y2 ⊕ ... ⊕ yn,

where yi equals either xi or ¬xi for 1 ≤ i ≤ n.1

Proof: The ‘if’-part of the statement follows easily from Proposition 2 and we proceed to
the proof of the ‘only if’-part.

Let f have the described property. By assigning arrival times 1, 1, 2, 3, ..., (n−2), (n−1)
to the inputs, it follows that for every permutation π ∈ Sn there is a representation of f

of the form

f(x1, x2, ..., xn) = g1(xπ(1), g2(xπ(2), ...gn−2(xπ(n−2), gn−1(xπ(n−1), xπ(n)))...)) (2)

such that gi depends on both of its inputs for 1 ≤ i ≤ n − 1.
By considering all 10 different boolean functions depending on two inputs and using the

relations ¬(x∧y) = (¬x)∨(¬y), ¬(x∨y) = (¬x)∧(¬y) and ¬(x⊕y) = (¬x)⊕y = x⊕(¬y),
it is possible to transform (2) to

f(x1, x2, ..., xn) = yπ
π(1) ◦π

1 (yπ
π(2) ◦π

2 (...(yπ
π(n−2) ◦π

n−2 (yπ
π(n−1) ◦π

n−1 yπ
π(n)))...)) (3)

1As usual ¬x denotes the negation of x; ∧, ∨ and ⊕ denote and, or and exclusive or, respectively.
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where yπ
i equals xi or ¬xi for 1 ≤ i ≤ n and ◦π

i ∈ {∧,∨,⊕} for 1 ≤ i ≤ n − 1.

For contradiction, we assume that ◦id
i 6= ◦id

i+1 for some 1 ≤ i ≤ n − 2. First let n = 3.
If (◦id

1 , ◦id
2 ) ∈ {(∨,⊕), (∧,⊕), (∧,∨), (∨,∧)}, then considering the cardinality of the set

f−1({1}) gives (◦π
1 , ◦π

2 ) = (◦id
1 , ◦id

2 ) in (3) for all permutations π. For each of the four
different possibilities this easily implies a contradiction to (3). We leave the details to the
reader and give just one example: If (◦π

1 , ◦π
2 ) = (∨,⊕), then x1 can force f(x1, x2, x3) = 1,

which is not true for x2 or x3. This contradicts (3) for permutations π with π(1) ∈ {2, 3}.
Hence we may assume that (◦id

1 , ◦id
2 ) ∈ {(⊕,∨), (⊕,∧)}. In both cases, changing the

value of x1 changes the value of f(x1, x2, x3), which is not true for x2 or x3. Again, this
easily implies a contradiction to (3).

Now let n ≥ 4. By substituting appropriate constants to all inputs except xi, xi+1 and
xi+2 we reduce f in (3) for π = id to yid

i ◦id
i (yid

i+1 ◦id
i+1 yid

i+2). Clearly, similar arguments as
above imply a contradiction and the proof is complete. 2

3 The prefix problem

In this section we consider the so-called prefix problem.

Prefix problem

Input: An associative operation ◦ : D2 → D and inputs x1, x2, ..., xn ∈ D.
Output: x1 ◦ x2 ◦ ... ◦ xi for all 1 ≤ i ≤ n.

The prefix problem lies at the core of many fundamental problems. The hard part in
designing a fast adder, for example, is the calculation of the carry bits, which is equivalent
to a prefix problem. It is an easy exercise to construct circuits for the prefix problem of
depth log2(n) + o(log(n)) and size O(n log(n)) or of depth 2 log2(n) + o(log(n)) and size
O(n). With a little more effort Ladner and Fischer [14] construct such circuits with depth
dlog2(n)e+ k and size 2n

(

1 + 1
2k

)

for each 0 ≤ k ≤ dlog2(n)e. None of these constructions
can accommodate arrival times.

Our main result in this section is the recursive construction of circuits P (t1, t2, ..., tn)
over the basis {◦} that solve the prefix problem on n inputs x1, x2, ..., xn with arrival
times t1, t2,..., tn ∈ N0 which are of close-to-optimal delay and of size O(n log(log(n))).
Constructions similar to those described by Liu et al. in [15] yield circuits for the prefix
problem with close-to-optimal delay but quadratic size.

Construction of P (t1, t2, ..., tn)
For n = 1 the circuit P (t1) consists just of the input vertex x1 having fan-out 1.
For n ≥ 2 we apply the following steps.

Step 1

Partition the set {1, 2, ..., n} into l :=
⌈√

n
⌉

sets

V1 = {1, 2, ..., n1},
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V2 = {(n1 + 1), (n1 + 2), ..., (n1 + n2)}, ...,
Vl = {(n1 + n2 + ... + nl−1 + 1), (n1 + n2 + ... + nl−1 + 2), ..., (n1 + n2 + ... + nl)}

such that n1 ≥ n2 ≥ ... ≥ nl and n1 − nl ≤ 1.

Step 2

For 1 ≤ i ≤ l we use the following dynamic programming approach to construct
a circuit Ci over the basis {◦} calculating yi := ◦j∈Vi

xj: In what follows Cj1,j2 will
denote a circuit calculating

◦j2
j=j1

x(n1+n2+...+ni−1+j)

for 1 ≤ j1 ≤ j2 ≤ ni. If j1 = j2, then Cj1,j2 consists just of the corresponding input
vertex.

If j1 < j2, we recursively construct C(j1, j2) using one ◦-gate joining the outputs of
two circuits C(j1, l) and C(l, j2) such that

max{delay(C(j1, l)), delay(C(l, j2))}

is minimized.

Let Ci = C(1, ni). Clearly, Ci use (ni − 1) ◦-gates. It will follow from Lemma 1
below that the computation of yi by Ci terminates at time t(yi) with

t(yi) ≤ log2

(

∑

j∈Vi

2tj

)

+ 2.

Step 3

For 1 ≤ i ≤ l we recursively construct

P (t(n1+n2+...+ni−1+1), ..., t(n1+n2+...+ni−1))

and use these circuits to calculate all (ni − 1) prefixes on the inputs xj for j ∈
Vi \ {n1 + n2 + ... + ni}.

Step 4

We construct P (t(y1), t(y2), ..., t(yl−1)) to calculate all (l − 1) prefixes on the inputs
yj for 1 ≤ j ≤ l − 1 calculated by the circuits constructed in Step 2.

Step 5

For 2 ≤ i ≤ l and j ∈ Vi \ {n1 +n2 + ...+ni} we join the output (y1 ◦ y2 ◦ ... ◦ yi−1) of
the circuit constructed in Step 4 with the output ◦ k∈Vi

k≤j

xk of the circuit constructed

in Step 3 using one ◦-gate which calculates

◦j
k=1xk = (y1 ◦ y2 ◦ ... ◦ yi−1) ◦

(

◦ k∈Vi
k≤j

xk

)

.
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Figure 1: P (t1, t2, ..., tn) for n ≤ 4
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Figure 2: P (t1, t2, ..., t25).

Step 6

Finally, we join the output (y1 ◦y2 ◦ ...◦yl−1) of the circuit constructed in Step 4 with
the output yl of the circuit constructed in Step 2 using one ◦-gate which calculates
◦n

i=1xi.

In Figures 1 and 2 we illustrate P (t1, t2, ..., tn) for n ≤ 4 and P (t1, t2, ..., t25). The next
lemma proves the claim made in Step 2.

Lemma 1 For a, a1, a2, ..., an ∈ N0 let D : ∪i∈NN
i
0 → N0 be defined recursively by D(a) = a

and

D(a1, a2, ..., an) = min
1≤l≤n−1

max{D(a1, a2, ..., al),D(al+1, al+2, ..., an)} + 1. (4)

Then

D(a1, a2, ..., an) ≤
⌈

log2

(

n
∑

i=1

2ai

)⌉

+ 1.

Proof: We start with a series of claims.
Let nA, nB ∈ N, l ∈ N0, A, A′ ∈ N

nA

0 with A ≤ A′ (componentwise) and B ∈ N
nB

0 . In
order to simplify our notation we denote the vector (a1, a2, ..., anA

, b1, b2, ..., bnB
) by (A, B)

where A = (a1, a2, ..., anA
) and B = (b1, b2, ..., bnB

). Furthermore, for l ≥ 1 let Z(l) denote
the vector of l zeros.

Claim 1 D(A) ≤ D(A′), D(A) ≤ D(A, 0), D(B) ≤ D(0, B), D(A, B) ≤ D(A, 0, B).

Proof of Claim 1: All these monotonicity properties follow immediately from (4) by induc-
tion. 2
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Claim 2 D(Z(l)) = dlog2(l)e for l ≥ 1.

Proof of Claim 2: Again by induction, we obtain D(Z(2i)) = i for i ≥ 0, which immediately
implies the desired result. 2

Claim 3 D(A, l) ≤ D(A, Z(2l)) and D(l, B) ≤ D(Z(2l), B).

Proof of Claim 3: We only prove the first inequality. The second follows by symmetry.
For contradiction, we assume that (A, l) is a counterexample of minimum length nA+1.
If D(A, Z(2l)) = max{D(A1),D(A2, Z(2l))} + 1 for some non-trivial A1 and some A2

with (A1, A2) = A, then (4) and the choice of (A, l) imply the contradiction

D(A, l) ≤ max{D(A1),D(A2, l)} + 1

≤ max{D(A1),D(A2, Z(2l))} + 1

= D(A, Z(2l)).

(Note that if A1 = A, then D(A2, l) = l = dlog2(2
l)e = D(A2, Z(2l)) by Claim 2.)

Therefore, there is some 1 ≤ r ≤ 2l − 1 such that

D(A, Z(2l)) = max{D(A, Z(r)),D(Z(2l − r))} + 1.

By (4), we have

D(A, l) ≤ max{D(A),D(l)} + 1 = max{D(A), l} + 1.

If D(A) ≥ l, then

D(A, l) ≤ D(A) + 1 ≤ D(A, Z(r)) + 1 ≤ D(A, Z(2l)),

which is a contradiction. Hence D(A) < l and we obtain the contradiction

D(A, l) ≤ l + 1 = dlog2(2
l + 1)e = D(0, Z(2l)) ≤ D(A, Z(2l))

and the proof of the claim is complete. 2

Claim 4 D(A, l, B) ≤ D(A, Z(2l+1), B).

Proof of Claim 4: This can be proved similarly to Claim 3 and we leave the proof to the
reader. 2

Altogether we obtain

D(a1, a2, ..., an) ≤ D
(

Z

(

n
∑

i=1

2(ai+1)

))

≤
⌈

log2

(

n
∑

i=1

2(ai+1)

)⌉

=

⌈

log2

(

n
∑

i=1

2ai

)⌉

+ 1
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and the proof is complete. 2

From the above construction it is obvious that some gates have fan-out up to O(
√

n).
Similarly, the constructions of Ladner and Fischer [14] lead to large fan-outs. For many
practical applications though, a fan-out of l at a gate should actually contribute Θ(log(l))
to the delay of that gate.

In the present situation we model this by using the basis {◦, id}, where id : D → D is
the identity function, and the following fan-out conditions.

(i) Input vertices and ◦-gates have fan-out at most 1.

(ii) id-gates have fan-out at most 2.

Next, we construct circuits P ′(t1, t2, ..., tn) over the basis {◦, id} that satisfy Conditions (i)
and (ii) and solve the prefix problem on n ≥ 2 inputs x1, x2, ..., xn with arrival time ti ∈ N0

for xi for 1 ≤ i ≤ n.

Construction of P ′(t1, t2, ..., tn)
Starting from P (t1, t2, ..., tn) we apply the following steps.

Step 1

Add one id-gate at input vertices of fan-out 2. (Note that all other input vertices
already have fan-out 1.)

Step 2

For 2 ≤ i ≤ l − 1 add (ni − 1) id-gates at the ◦-gate calculating y1 ◦ y2 ◦ ... ◦ yi−1

in such a way that they contribute a delay of dlog2(ni)e. (Note that this is clearly
possible using balanced binary trees.)

Step 3

Add nl id-gates at the ◦-gate calculating y1 ◦ y2 ◦ ... ◦ yl−1 in such a way that they
contribute a delay of dlog2(nl + 1)e.

Step 4

Recurvisely apply the above changes to the subfunctions of the form P (t′1, t
′
2, ..., t

′
l′)

used in P (t1, t2, ..., tn).

For w ≥ n ≥ 1 let size(n) and delay(w, n) denote the maximum size and the maximum

delay of a circuit P (t1, t2, ..., tn) such that ti ∈ N0 for 1 ≤ i ≤ n and w =
n
∑

i=1

2ti . Define

size′(n) and delay′(w, n) for P ′(t1, t2, ..., tn) similarly. We have the following recursions.

Lemma 2 For w ≥ n ≥ 3

size(n) ≤
(⌈√

n
⌉

+ 1
)

size
(⌈√

n
⌉

− 1
)

+ 2
(

n −
⌈√

n
⌉)

,

size′(n) ≤
(⌈√

n
⌉

+ 1
)

size′
(⌈√

n
⌉

− 1
)

+ 4
(

n −
⌈√

n
⌉)

,

delay(w, n) ≤ delay
(

4w,
⌈√

n
⌉

− 1
)

+ 1 and

delay′(w, n) ≤ delay′
(

4w,
⌈√

n
⌉

− 1
)

+ log2

(√
n
)

+ 5.
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Proof: Let t1, t2, ..., tn ∈ N0 be such that w =
n
∑

i=1

2ti . We use the same notation as during

the construction of P (t1, t2, ..., tn) and P ′(t1, t2, ..., tn). Since n ≥ 3, we have 2 ≤ n1 ≤ l.
The circuit P (t1, t2, ..., tn) contains (l + 1) subcircuits of the form P (t′1, t

′
2, ..., t

′
l′) on at

most (l − 1) inputs each. To evaluate yi for 1 ≤ i ≤ l, a number of (n1 − 1) + (n2 −
1) + ... + (nl − 1) = (n − l) ◦-gates are used. Finally, to compute the remaining outputs
(n2 − 1) + (n3 − 1) + ... + (nl − 1) + 1 ≤ (n − l) more ◦-gates are used. This implies the
recursion for size(n).

Since the construction of P ′(t1, t2, ..., tn) from P (t1, t2, ..., tn) recursively adds

(n − l) + (n2 − 1) + (n3 − 1) + ... + (nl−1 − 1) + nl ≤ 2
(

n −
⌈√

n
⌉)

id-gates, the recursion for size′(n) follows.

Now we proceed to delay(w, n) and delay′(w, n). We have

l
∑

i=1

2t(yi) ≤
l
∑

i=1

2(log2(
∑

j∈Vi
2tj )+2) = 4

l
∑

i=1

∑

j∈Vi

2tj = 4

n
∑

i=1

2ti = 4w.

As delay(w, n) is obviously non-decreasing in w, the recursion for delay(w, n) follows.
Since the construction of P ′(t1, t2, ..., tn) from P (t1, t2, ..., tn) recursively increases the

delay by

1 + max {dlog2(n2)e , ..., dlog2(nl−1)e , dlog2(nl + 1)e} ≤ 1 + 1 + log2

(√
n + 2

)

≤ 4 + log2

(√
n
)

,

the recursion for delay′(n) follows. 2

In the next lemma we solve the above recursions.

Lemma 3

(i) Let s : N → N, α, β ≥ 0 and n0 ∈ N be such that for n ≥ n0

s(n) ≤
(√

n + α
)

s
(⌈√

n
⌉

− 1
)

+ βn.

Then there is some γ ≥ 0 such that for all n ∈ N

s(n) ≤ γn log2(log2(n)) + s(1). (5)

(ii) Let d : N
2 → N, α, β ≥ 0 and n0 ∈ N be such that for w ∈ N and n ≤ n0 − 1 the term

d(w, n) − log2(w) is bounded and for w ∈ N and n ≥ n0

d(w, n) ≤ d
(

αw,
⌈√

n
⌉

− 1
)

+ β.

Then there is some γ ≥ 0 such that for all w, n ∈ N

d(w, n) ≤ log2(w) + (log2(α) + β) log2(log2(n)) + γ. (6)
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(iii) Let d : N
2 → N, α, β ≥ 0 and n0 ∈ N be such that for w ∈ N and n ≤ n0 − 1 the term

d(w, n) − log2(w) is bounded and for w ∈ N and n ≥ n0

d(w, n) ≤ d
(

αw,
⌈√

n
⌉

− 1
)

+ log2

(√
n
)

+ β.

Then there is some γ ≥ 0 such that for all w, n ∈ N

d(w, n) ≤ log2(w) + log2(n) + (log2(α) + β) log2(log2(n)) + γ. (7)

Proof: We just prove (i) and leave the analogous proofs of (ii) and (iii) to the reader.
We will prove (5) by induction. Let γ ′ > β. Clearly, there is some n1 ≥ n0 such that

for n ≥ n1 and γ ≥ γ′

αγ
√

n log2(log2(n)) + s(1)
(√

n + α
)

+ βn − γ
√

n
(√

n + α
)

≤ s(1).

Let γ ≥ γ′ be such that (5) holds for n ≤ n1 − 1. For n ≥ n1 we obtain, by induction, that

s(n) ≤
(√

n + α
)

s
(⌈√

n
⌉

− 1
)

+ βn

≤
(√

n + α
) (

γ
√

n log2

(

log2

(√
n
))

+ s(1)
)

+ βn

= γn log2(log2(n)) + αγ
√

n log2(log2(n)) + s(1)
(√

n + α
)

+ βn − γ
√

n
(√

n + α
)

≤ γn log2(log2(n)) + s(1)

and the proof of (5) is complete. 2

Combining Lemmata 2 and 3 with the obvious fact that log2 (
∑n

i=1 2ti) ≥ max{ti | 1 ≤ i ≤
n} we obtain the main result of this section.

Theorem 2 The prefix problem on inputs x1, x2, ..., xn with arrival times t1, t2, ..., tn ∈ N0

can be solved by
(i) a circuit over the basis {◦} with size O (n log (log (n))) and delay

log2

(

n
∑

i=1

2ti

)

+ 3 log2 (log2 (n)) + O(1);

(ii) a circuit over the basis {◦, id} satisfying the fan-out conditions (i) and (ii) with size
O (n log (log (n))) and delay

log2

(

n
∑

i=1

2ti

)

+ log2 (n) + 7 log2 (log2 (n)) + O(1).

Furthermore, both kinds of circuits can be constructed in polynomial time.
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Clearly, Theorem 2 is most interesting for considerable arrival time differences. In this case
log2 (n) may be arbitrarily small compared to log2 (

∑n

i=1 2ti). Hence, applying well-known
methods for fan-out reduction (e.g. [7]) to P (t1, t2, ..., tn) leads to weaker results than (ii)
in Theorem 2.

As we mentioned at the beginning of this section, circuits for the prefix problem can be
used to construct adders. Given arrival times, say t1, t2, ..., tn ∈ N0 and t′1, t

′
2, ..., t

′
n ∈ N0,

for the bits of two n-bit binary numbers, say x and y, and using a well-known construction
(cf. e.g. [14, 27]) we obtain a circuit over the basis {∨,∧,¬} of fan-in 2 for ∨- or ∧-gates
and fan-in 1 for ¬-gates calculating the sum of x and y with size O(n log (log (n))) and
delay

2 log2

(

n
∑

i=1

(

2ti + 2t′i

)

)

+ 6 log2 (log2 (n)) + O(1).

In view of Proposition 1, the bounds on the delay given in Theorem 2 are close-to-optimal
and the bounds on the size are optimal up to a factor of O(log(log(n))). The best known

adders are of depth log2(n) + O
(

√

log(n)
)

and size O(n log(n)) [1] or size O(n) [11],

respectively. The adder developed in [29], which takes arrival times into account, has size
O(n log(n)), but no delay bound has been proved.

4 Formula size and delay

In this section we extend a well-known type of result relating formula size and depth.
The first such result was proved by Spira [24], whose original idea underwent numerous
variations [2, 3, 12, 13, 16, 18, 19]. Most of these can be generalized from depth to delay
similarly to the next theorem.

The following proof relies on restructuring a given formula using of the so-called select
function sel(x, y, z) = (x∧y)∨((¬x)∧z). Since most standard cell libraries in VLSI design
contain a primitive gate for this function, the proof can easily be turned into a practical
strategy to speed up a late signal on a chip by applying the restructuring step to some
part of its fan-in cone.

Theorem 3 Let r ≥ 2 and let Ω be a set of boolean functions on at most r inputs. Let α ∈
N be the minimum depth of a circuit over Ω for the function sel(x, y, z) = (x∧y)∨((¬x)∧z).
For every function in Ω on l ≥ 2 inputs, let Ω contain all functions on (l − 1) inputs that
arise by setting one of the inputs to 0 or 1.

Then there is some constant β = β(Ω) with the following property: Let C be a read-
once formula, i.e. a circuit for a boolean function f : {0, 1}n → {0, 1} over Ω such that the
fan-out of input vertices and gates is at most 1. For 1 ≤ i ≤ n let ti ∈ N0 be the arrival
time of the i-th input of f .

Then there is a circuit C̃ for f over Ω such that

delay(C̃) ≤ α

logr(r + 1) − 1
logr

(

n
∑

i=1

rti

)

+ β. (8)

11



Proof: We prove the result by induction over n. Let w =
n
∑

i=1

rti and note that α
logr(r+1)−1

=

α

logr( r+1

r )
> α ≥ 1. If n = 1, then

α

logr(r + 1) − 1
logr

(

n
∑

i=1

rti

)

+ β =
α

logr(r + 1) − 1
t1 + β ≥ t1 + β.

Therefore, there is some β ∈ N independent of C and f such that (8) holds for n = 1. We
may assume that β ≥ α.

Now let n ≥ 2. The directed graph underlying C is a rooted tree T whose leaves are
the inputs x1, x2, ..., xn. For every vertex u of T let w(u) denote the sum of rti where the
sum extends over all i such that xi lies in the subtree of T rooted at u.

Let the vertex u be chosen such that (i) w(u) > w
r+1

, (ii) w(u) is minimum subject to
(i) and u has maximum distance from the root subject to (i) and (ii). It is easy to see that
w(u) < w. Let Cu denote the subcircuit of C corresponding to the subtree of T rooted at
u. For i ∈ {0, 1} let Ci denote the circuit that arises from C by replacing the output of u

by the constant i.
Since Cu, C1 and C0 are circuits for functions defined on at most (n−1) inputs, we can

apply the induction hypothesis to them. This implies the existence of circuits C̃u, C̃1 and
C̃0 over Ω for the same functions whose delay is bounded as in (8).

Note that if g denotes the function computed at the vertex u, then clearly f =
sel(g, f |g=1, f |g=0). Therefore, using C̃u, C̃1, C̃0 and the circuit for sel over Ω, we can
construct a circuit C̃ for f over Ω such that

delay(C̃) ≤ α +
α

logr(r + 1) − 1
max {logr(w(u)), logr (w − w(u))} + β. (9)

By the choice of u, we have w − w(u) ≤ wr
r+1

. If w(u) ≤ wr
r+1

, then (9) implies

delay(C̃) ≤ α +
α

logr(r + 1) − 1
logr

(

wr

r + 1

)

+ β =
α

logr(r + 1) − 1
logr(w) + β.

Hence, we may assume that w(u) > wr
r+1

. In this case u must be a leaf of T and Cu has
delay logr(w(u)). Therefore, we can strengthen (9) as follows.

delay(C̃) ≤ α + max

{

logr(w(u)),
α

logr(r + 1) − 1
logr (w − w(u)) + β

}

. (10)

If the right-hand term yields the maximum in (10), then we can proceed as before. Hence,
we may assume that the left-hand term yields the maximum in (10) and trivially we obtain

delay(C̃) ≤ α + logr(w(u)) ≤ α

logr(r + 1) − 1
logr(w) + β,

which completes the proof. 2
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5 Conclusions

Motivated by the use of circuits as a mathematical model in VLSI design we proposed the
notion of delay. It naturally extends the notion of depth using information provided for
example by static timing analysis. Several engineering publications and industrial trends
show that chip designers are becoming aware of the need for such a notion [4, 10, 15, 25, 29].

We proved several fundamental results about delay and described algorithms leading
to circuits of small delay. The general strategies used in these algorithms can clearly be
applied to a variety of problems that are both of theoretical and practical interest.

The definition of delay grew naturally out of a close ongoing cooperation between our
own institute and the IBM company that has been lasting for more than 15 years. The
theoretical results presented here are presently being implemented as part of our BONN
tools, which are electronic design automation tools developed at our institute for industrial
use.
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