Übungsblatt 11

Aufgabe 48:
Zeigen Sie:

a) Enthält ein Ellipsoid \(E = \{ x \mid (x-t)^TB^{-1}(x-t) \leq 1 \} \) einen Ball mit Radius \(r \),
dann ist auch der Ball \(\{ x \mid (x-t)^T(x-t) \leq r^2 \} \) in \(E \) enthalten.

b) Es sei ein \(n \)-dimensionaler Simplex \(\subset \mathbb{R}^n \) mit Knoten \(v_0, \ldots, v_n \) gegeben. Sei
\(v_c = \frac{1}{n+1} \sum_{j=0}^{n} v_j \) der Schwerpunkt des Simplex. Angenommen, die \(v_j \) haben
rationale Koeffizienten mit Nenner \(\leq 2^L \) für ein gegebenes \(L \). Zeigen Sie, dass
die Kugel mit Mittelpunkt \(v_c \) und Radius \(r = 2^{-2nL} \) vollständig im Simplex liegt.

c) Besitzt ein lineares Ungleichungssystem eine Lösung und enthält das Ellipsoid \(E \)
alle Lösungen des Ungleichungssystems mit \(\|x\| \leq n2^L \), dann hat jeder Punkt
auf dem Rand von \(E \) mindestens den Abstand \(2^{-2nL} \) vom Mittelpunkt von \(E \).

(15 Punkte)

Aufgabe 49:
Wir beweisen nun den Satz von John.
Sei \(S \subset \mathbb{R}^n \) eine nichtleere symmetrische konvexe Menge (\(S \) ist symmetrisch, wenn gilt:
\(x \in S \Rightarrow -x \in S \)).
Beweisen Sie folgende Aussagen:

a) Es existiert ein Ellipsoid \(E \) mit minimalem Volumen, das \(S \) enthält. (Benutzen
Sie hierfür ein Kompaktheitsargument.)

b) Zeigen Sie, dass dieses Ellipsoid eindeutig ist. Nehmen Sie dazu an, dass es zwei
Ellipsöide mit gleichem Volumen gibt, die die obigen Eigenschaften haben und
nutzen Sie aus, dass diese Eigenschaften unter invertierbare lineare Abbildungen
erhalten bleiben.

c) Zeigen Sie:
\[
\frac{1}{\sqrt{n}} E \subset S
\]

(20 Punkte)