Exercise Set 11

Exercise 11.1. Show that the ratio of the cost of the integral primal solution and the cost of the dual solution computed by the primal-dual algorithm for the PRIZE-COLLECTING STEINER FOREST PROBLEM discussed in the lecture (which yields a 3-approximation) can get arbitrarily close to 3.

Hint: Consider a grid-graph with vertex set $\{v_{i,j} : 1 \le i \le 2, 1 \le j \le \ell\}$ of height 2 and width $\ell \gg 1$. As vertex pairs (for which a penalty is charged in case they are not connected), choose $\{v_{i,1}, v_{i,\ell}\}$ for i = 1, 2 and $\{v_{1,j}, v_{2,j}\}$ for $2 \le j \le \ell - 1$. Choose appropriate edge weights and penalties.

(5 points)

Exercise 11.2. Show that for each $k \in \mathbb{N}$, there is an instance of the PRIZE-COLLECTING STEINER FOREST PROBLEM with $|\mathcal{P}| = k$ (\mathcal{P} denotes the set of vertex pairs for which a penalty is charged in case they are not connected in the computed solution) such that the 2-approximation algorithm discussed in the lecture takes k many iterations/recursive calls.

Hint: Consider a path and choose edge weights, penalties, and \mathcal{P} appropriately.

(5 points)

Exercise 11.3. Consider the restriction \mathcal{P} of the unweighted VERTEX COVER PROBLEM to graphs where the maximum degree of every vertex is bounded by a constant B.

Let $\varepsilon > 0$. Show: If there exists a polynomial time approximation algorithm for the STEINER TREE PROBLEM with performance ratio $1 + \epsilon$, then there exists a polynomial time approximation algorithm for problem \mathcal{P} with performance ratio $1 + (B + 1)\epsilon$.

(5 points)

Exercise 11.4. Let G = (V, E) be an undirected graph. For a partition \mathcal{P} of the vertex set V let

$$\delta(\mathcal{P}) := \{ e : e \in \delta(U) \text{ for some } U \in \mathcal{P} \}.$$

Prove

$$\left\{ x \in [0,1]^E : \sum_{e \in E} x_e = |V(G)| - 1, \sum_{e \in E(G[X])} x_e \le |X| - 1 \text{ for } \emptyset \neq X \subsetneq V(G) \right\}$$
$$= \left\{ x \in [0,1]^E : \sum_{e \in E} x_e = |V(G)| - 1, \sum_{e \in \delta(\mathcal{P})} x_e \ge |\mathcal{P}| - 1 \text{ for every partition } \mathcal{P} \text{ of } V \right\}.$$

(5 points)

Deadline: Tuesday, July 2nd, before the lecture. The websites for lecture and exercises can be found at:

http://www.or.uni-bonn.de/lectures/ss24/appr_ss24_ex.html

In case of any questions feel free to contact me at blauth@or.uni-bonn.de.