Exercise Set 10

Exercise 10.1. Show that the analysis of the primal-dual algorithm for the STEINER FOREST PROBLEM is tight (i.e., the approximation guarantee of the primal-dual algorithm is not better than 2).

(4 points)

Exercise 10.2. Show that the clean-up step at the end of the primal-dual algorithm for the STEINER FOREST PROBLEM is crucial: without the clean-up step, the algorithm does not even achieve any finite performance ratio.

(4 points)

Exercise 10.3. Let G = (V, E) be a directed graph with root $r \in V$ and nonnegative edge weights c. Consider the following linear programming relaxation for the MINIMUM WEIGHT ARBORESCENCE PROBLEM:

$$\begin{array}{rcl} \min & c^{\top}x \\ & \displaystyle \sum_{e \in \delta^{-}(S)} x_{e} & \geq & 1 & \forall S \subseteq V(G) \setminus \{r\} \\ & x & \geq & 0 \end{array} .$$

Consider the following primal-dual algorithm for the MINIMUM WEIGHT ARBORESCENCE PROB-LEM.

Input: A directed graph G = (V, E) with root $r \in V$ and nonnegative edge weights c.

- 1. Set $y_S \coloneqq 0$ for each $S \subseteq V \setminus \{r\}$ and $F \coloneqq \emptyset$.
- 2. Set $i \coloneqq 0$.
- 3. Let \mathcal{A} denote the family of minimal vertex sets $A \subseteq V(G) \setminus \{r\}$ with $\delta_F^-(A) = 0$.
- 4. While $\mathcal{A} \neq \emptyset$ do:
- 5. Set i := i + 1.
- 6. Increase y_A for each $A \in \mathcal{A}$ uniformly until $c_e = \sum_{S:e \in \delta^-(S)} y_S$ for some $A' \in \mathcal{A}$ and $e \in \delta^-(A')$. Let e_i denote this edge.
- 7. Set $F = F \cup \{e_i\}$.
- 8. Update \mathcal{A} as in Step 3.
- 9. For $j \coloneqq i$ down to 1 do:
- 10. If $F \setminus \{e_j\}$ satisfies $\delta_F(S) \ge 1$ for all $S \subseteq V(G) \setminus \{r\}$, set $F \coloneqq F \setminus \{e_j\}$.
- 11. Return F.

Approximation Algorithms	Prof. Dr. Vera Traub
Summer Semester 2024	Jannis Blauth

Show that this algorithm computes an arborescence and a dual solution y to the above LP of the same cost.

(5 points)

Exercise 10.4. An instance of the PRIZE-COLLECTING STEINER FOREST PROBLEM consists of an instance of the STEINER FOREST PROBLEM plus a penalty $\pi_{\{v,w\}} \in \mathbb{R}_+$ for each terminal pair $\{v,w\}$. The goal is to find a spanning forest H which minimizes $c(E(H)) + \pi(H)$, where $\pi(H)$ is the sum of penalties of terminal pairs that are not in the same connected component of H. The natural LP relaxation is:

 $\begin{array}{lll} \min & c^{\top}x + \pi^{\top}z \\ & \displaystyle \sum_{e \in \delta(U)} x_e + z_{\{v,w\}} & \geq & 1 & \forall v \in U \subset V(G) \setminus \{w\} \\ & \quad x,z & \geq & 0 \ . \end{array}$

Consider the following threshold rounding approach: Let (x, z) be an optimum solution to the above LP. For some $0 \le \alpha < 1$, set $x'_e := \frac{1}{1-\alpha} \cdot x_e$ for all e; then x' is a feasible solution to the LP relaxation of the STEINER FOREST PROBLEM from the lecture restricted to the terminal pairs $\{v, w\}$ for which $z_{\{v, w\}} \le \alpha$.

- (i) Show that for $\alpha = \frac{1}{3}$ this yields a 3-approximation.
- (ii) Show that by trying different values for α , one can obtain a $\frac{1}{1-e^{-\frac{1}{2}}}$ -approximation.

Hint: First, choose α with respect to some distribution. Then, derandomize the algorithm.

(2+5 points)

Deadline: Tuesday, June 25th, before the lecture. The websites for lecture and exercises can be found at:

http://www.or.uni-bonn.de/lectures/ss24/appr_ss24_ex.html

In case of any questions feel free to contact me at blauth@or.uni-bonn.de.