Exercise Set 9

Exercise 9.1. Let (U, S, c) be an instance of MINIMUM WEIGHT SET COVER and $p := \max_{S \in S} |S|$. Consider the following algorithm:

- 1. For $u \in U$, define $c_u \coloneqq \min\{c(S) : u \in S \in \mathcal{S}\}$.
- 2. Let $\mathcal{R} \coloneqq \emptyset$ and let $W \coloneqq U$ be the set of elements uncovered by \mathcal{R} .
- 3. While \mathcal{R} is not a feasible solution, do the following:
 - Choose a set $S \in S$ that minimizes $\frac{c(S)}{\sum_{u \in (S \cap W)} c_u}$.
 - Add S to \mathcal{R} .
 - Replace W by $W \setminus S$.
- 4. Return \mathcal{R} .
- (a) Prove that in every iteration of the above algorithm, we have

$$\frac{c(S)}{\sum_{u\in (S\cap W)}c_u}\leq \min\{1,\frac{\operatorname{OPT}}{\sum_{u\in W}c_u}\},$$

where OPT denotes the value of an optimum solution.

(b) Prove that the above algorithm is a $(1 + \ln(p))$ -approximation for MINIMUM WEIGHT SET COVER.

(2+3 points)

Exercise 9.2. Let (U, S, c) be an instance of MINIMUM WEIGHT SET COVER and $p := \max_{S \in S} |S|$. Assume w.l.o.g. that for every set $S \in S$ also all its subsets $R \subseteq S$ are present in S and we have $c(R) \leq c(S)$. Consider the following algorithm:

- 1. Let \mathcal{R} be an arbitrary set cover solution, where w.l.o.g. \mathcal{R} is a partition of U.
- 2. Do the following as long as it decreases the potential function $\Phi(\mathcal{R}) \coloneqq \sum_{R \in \mathcal{R}} H_{|R|} \cdot c(R)$ (where for $n \in \mathbb{N}$, H_n denotes the *n*-th harmonic number):
 - For each set $R \in \mathcal{R}$, define $\bar{c}(u) \coloneqq \frac{1}{|R|} \cdot c(R)$ for all $u \in R$.
 - Choose $S \in \mathcal{S}$ that minimizes $H_{|S|} \cdot c(S) \sum_{u \in S} \overline{c}(u)$.
 - Replace every set $R \in \mathcal{R}$ by $R \setminus S$.
 - Add S to \mathcal{R} .
- 3. Return \mathcal{R} .
- (a) Prove that the above algorithm terminates in finite time.

Approximation Algorithms	Prof. Dr. Vera Traub
Summer Semester 2024	Jannis Blauth

- (b) Prove that the output \mathcal{R} of the above algorithm satisfies $c(\mathcal{R}) \leq H_p \cdot \text{OPT}$, where OPT denotes the value of an optimum solution.
- (c) How can the above algorithm be modified to run in polynomial time while loosing only an arbitrarily small error of $\varepsilon > 0$ in the approximation ratio?

(1+4+2 points)

Exercise 9.3. Consider an undirected graph G = (V, E) with non-negative edge weights $c : E \to \mathbb{R}_+$ and terminal set $T \subseteq V$. The BOTTLENECK STEINER TREE PROBLEM asks for a Steiner tree S for T in G whose bottleneck weight $\max_{e \in E(S)} c(e)$ is minimum. Show that BOTTLENECK STEINER TREE can be solved in polynomial time.

(3 points)

Exercise 9.4. Let (G, c, T) be an instance of STEINER TREE. Fix $k \in \mathbb{N}$. Let \mathcal{C}^k be the set of pairs (t, R) for all $t \in R \subseteq T$ with $|R| \leq k$ (called *directed components*). For $C = (t, R) \in \mathcal{C}^k$, let c(C) denote the minimum cost of a Steiner tree for R in (G, c). Fix an arbitrary terminal $r \in T$ as root. For $r \in U \subset T$, we denote by $\delta^+_{\mathcal{C}^k}(U)$ the set of all $(t, R) \in \mathcal{C}^k$ with $t \in U$ and $R \setminus U \neq \emptyset$. The so-called *directed component LP* then reads as follows:

$$\min \sum_{\substack{C \in \mathcal{C}^k \\ \sum_{C \in \delta_{\mathcal{C}^k}^+(U)} x_C \geq 1 \quad \forall r \in U \subset T \\ x_C \geq 0 \quad \forall C \in \mathcal{C}^k .$$

Prove that for any fixed $k \in \mathbb{N}$, the directed component LP for the problem of finding a k-restricted Steiner tree can be solved in polynomial time.

(5 points)

Deadline: Tuesday, June 18th, before the lecture. The websites for lecture and exercises can be found at:

http://www.or.uni-bonn.de/lectures/ss24/appr_ss24_ex.html

In case of any questions feel free to contact me at blauth@or.uni-bonn.de.