Exercise Set 2

Exercise 2.1. For $k \in \mathbb{N}$ consider the following problem:
Instance: A set U and a set \mathcal{S} of subsets of U with $|S| \leq k$ for all $S \in \mathcal{S}$, weights $w: U \rightarrow \mathbb{R}_{\geq 0}$.

Task: Find $T \subseteq U$ such that $T \cap S \neq \emptyset$ for each $S \in \mathcal{S}$ and $\sum_{t \in T} w(t)$ minimum.
(i) Show that this problem is NP-hard for $k \geq 2$.
(ii) Give a polynomial time k-factor approximation algorithm.
(iii) Give a linear time k-factor approximation algorithm for the special case that $w(t)=$ 1 for $t \in U$.

$$
(1+2+2 \text { points })
$$

Exercise 2.2. Consider the standard IP formulation of the Minimim Weight Set Cover Problem, and its LP-relaxation

$$
\min \left\{c x: \sum_{S \in \mathcal{S}: e \in S} x_{S} \geq 1 \text { for all } e \in U, x_{S} \geq 0 \text { for all } S \in \mathcal{S}\right\} .
$$

Consider the algorithm that picks all sets associated with non-zero values in an optimum solution to the LP-relaxation. Show that this algorithm achieves an approximation guarantee of p if each element $e \in U$ is contained in at most p sets.

Exercise 2.3. Consider the following variant of SET Cover:
Instance: A set U, sets $\mathcal{S}=\left\{S_{1}, \ldots, S_{m}\right\}$ such that $\bigcup_{S \in \mathcal{S}} S=U$, an integer $k \in \mathbb{N}$.
Output: k sets $S_{i_{1}}, \ldots, S_{i_{k}} \in \mathcal{S}$ such that $\left|\bigcup_{j=1}^{k} S_{i_{j}}\right|$ is maximum.
Show that iteratively picking the element that maximizes the amount of not yet covered elements is a $\left(1-\frac{1}{e}\right)$-approximation.

Exercise 2.4. Prove that SATISFIABILITY remains $N P$-complete if each clause contains at most three literals and each variable occurs in at most three clauses.

Exercise 2.5. An instance of MAX-SAT is called k-satisfiable if any k of its clauses can be satisfied simultaneously. Following the hint, develop a polynomial-time algorithm that computes for every 2-satisfiable instance a truth assignment which satisfies at least a $\frac{\sqrt{5}-1}{2}$-fraction of the clauses.

Hint: Some variables occur in one-element clauses (w.l.o.g. all one-element clauses are positive), set them true with probability a (for some constant $a \in[0,1]$), and set the other variables true with probability $\frac{1}{2}$. Choose a appropriately and derandomize this algorithm.

Deadline: Tuesday, April $23^{\text {rd }}$, until 2:15 PM (before the lecture) on paper or per upload on eCampus. Solutions may be submitted in groups of up to 2 people.

The websites for lecture and exercises can be found at:
http://www.or.uni-bonn.de/lectures/ss24/appr_ss24_ex.html

In case of any questions feel free to contact me at puhlmann@or.uni-bonn.de

