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Exercise Set 2

Exercise 2.1. For k ∈ N consider the following problem:

Instance: A set U and a set S of subsets of U with |S| ≤ k for all S ∈ S, weights
w : U → R≥0.

Task: Find T ⊆ U such that T ∩ S ̸= ∅ for each S ∈ S and
∑

t∈T w(t) minimum.

(i) Show that this problem is NP-hard for k ≥ 2.

(ii) Give a polynomial time k-factor approximation algorithm.

(iii) Give a linear time k-factor approximation algorithm for the special case that w(t) =
1 for t ∈ U .

(1+2+2 points)

Exercise 2.2. Consider the standard IP formulation of the Minimim Weight Set
Cover Problem, and its LP-relaxation

min
{

cx :
∑

S∈S:e∈S

xS ≥ 1 for all e ∈ U, xS ≥ 0 for all S ∈ S
}

.

Consider the algorithm that picks all sets associated with non-zero values in an optimum
solution to the LP-relaxation. Show that this algorithm achieves an approximation
guarantee of p if each element e ∈ U is contained in at most p sets.

(3 points)

Exercise 2.3. Consider the following variant of Set Cover:

Instance: A set U , sets S = {S1, . . . , Sm} such that
⋃

S∈S
S = U , an integer k ∈ N.

Output: k sets Si1 , . . . , Sik
∈ S such that

∣∣∣∣∣ k⋃
j=1

Sij

∣∣∣∣∣ is maximum.

Show that iteratively picking the element that maximizes the amount of not yet covered
elements is a (1 − 1

e )-approximation.
(4 points)

Exercise 2.4. Prove that Satisfiability remains NP -complete if each clause contains
at most three literals and each variable occurs in at most three clauses.

(3 points)
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Exercise 2.5. An instance of Max-Sat is called k-satisfiable if any k of its clauses can
be satisfied simultaneously. Following the hint, develop a polynomial-time algorithm
that computes for every 2-satisfiable instance a truth assignment which satisfies at least
a

√
5−1
2 -fraction of the clauses.

Hint: Some variables occur in one-element clauses (w.l.o.g. all one-element clauses are
positive), set them true with probability a (for some constant a ∈ [0, 1]), and set the
other variables true with probability 1

2 . Choose a appropriately and derandomize this
algorithm.

(5 points)

Deadline: Tuesday, April 23rd, until 2:15 PM (before the lecture) on paper or per
upload on eCampus. Solutions may be submitted in groups of up to 2 people.

The websites for lecture and exercises can be found at:

http://www.or.uni-bonn.de/lectures/ss24/appr_ss24_ex.html

In case of any questions feel free to contact me at puhlmann@or.uni-bonn.de.

https://ecampus.uni-bonn.de/goto_ecampus_exc_3351201.html
http://www.or.uni-bonn.de/lectures/ss24/appr_ss24_ex.html
mailto:puhlmann@or.uni-bonn.de

