Exercise Set 2

Exercise 2.1. For $k \in \mathbb{N}$ consider the following problem:

Instance: A set U and a set S of subsets of U with $|S| \leq k$ for all $S \in S$, weights $w: U \to \mathbb{R}_{\geq 0}$.

Task: Find $T \subseteq U$ such that $T \cap S \neq \emptyset$ for each $S \in S$ and $\sum_{t \in T} w(t)$ minimum.

- (i) Show that this problem is NP-hard for $k \ge 2$.
- (ii) Give a polynomial time k-factor approximation algorithm.
- (iii) Give a linear time k-factor approximation algorithm for the special case that w(t) = 1 for $t \in U$.

(1+2+2 points)

Exercise 2.2. Consider the standard IP formulation of the MINIMIM WEIGHT SET COVER PROBLEM, and its LP-relaxation

$$\min\left\{cx : \sum_{S \in \mathcal{S}: e \in S} x_S \ge 1 \text{ for all } e \in U, \ x_S \ge 0 \text{ for all } S \in \mathcal{S}\right\}.$$

Consider the algorithm that picks all sets associated with non-zero values in an optimum solution to the LP-relaxation. Show that this algorithm achieves an approximation guarantee of p if each element $e \in U$ is contained in at most p sets.

(3 points)

Exercise 2.3. Consider the following variant of SET COVER:

Instance: A set U, sets $S = \{S_1, \ldots, S_m\}$ such that $\bigcup_{S \in S} S = U$, an integer $k \in \mathbb{N}$.

Output: k sets $S_{i_1}, \ldots, S_{i_k} \in S$ such that $\left| \bigcup_{j=1}^k S_{i_j} \right|$ is maximum.

Show that iteratively picking the element that maximizes the amount of not yet covered elements is a $(1 - \frac{1}{e})$ -approximation.

(4 points)

Exercise 2.4. Prove that SATISFIABILITY remains *NP*-complete if each clause contains at most three literals and each variable occurs in at most three clauses.

(3 points)

Approximation Algorithms	Prof. Dr. Vera Traub
Summer Semester 2024	Luise Puhlmann

Exercise 2.5. An instance of MAX-SAT is called k-satisfiable if any k of its clauses can be satisfied simultaneously. Following the hint, develop a polynomial-time algorithm that computes for every 2-satisfiable instance a truth assignment which satisfies at least a $\frac{\sqrt{5}-1}{2}$ -fraction of the clauses.

Hint: Some variables occur in one-element clauses (w.l.o.g. all one-element clauses are positive), set them *true* with probability a (for some constant $a \in [0, 1]$), and set the other variables *true* with probability $\frac{1}{2}$. Choose a appropriately and derandomize this algorithm.

(5 points)

Deadline: Tuesday, April 23rd, until 2:15 PM (before the lecture) on paper or per upload on eCampus. Solutions may be submitted in groups of up to 2 people. The websites for lecture and exercises can be found at:

http://www.or.uni-bonn.de/lectures/ss24/appr_ss24_ex.html

In case of any questions feel free to contact me at puhlmann@or.uni-bonn.de.