Exercise Set 12

Exercise 12.1. In this exercise, we use the setting of section 5.5.2 in the lecture notes. Let $c: E \rightarrow \mathbb{R}_{>0}$ depend only on direction and layer.
(a) Let $s=\left(x_{s}, y_{s}, z_{s}\right) \in V, y_{v} \in \mathbb{Z}$ and $v_{i}=\left(x_{s}, y_{v}, i\right) \in V$ for $i=1, \ldots, l$. Show that shortest paths from s to v_{i} for $i=1, \ldots, l$ can be computed in $\mathcal{O}(l)$ total time (so not just individually in linear time, but all l).
(b) Show that, without preprocessing time, one can compute $\operatorname{dist}_{G, c}(s, T)$ for any given $s \in V$ and given $T \subseteq V$ consisting of t rectangles in $\mathcal{O}(t l)$ time (you may use the first part as a black box).

Exercise 12.2. Let G be an undirected graph with resistances and capacitances res, cap: $E \rightarrow \mathbb{R}_{>0}$ on the edges. Let Y be a Steiner tree on the terminal set N rooted at the source pin p and sink pins $N \backslash\{p\}$. We interpret Y as an arborescence. Let $\pi: N \backslash\{p\} \rightarrow \mathbb{R}_{>0}$ be sink capacitances. We denote by $Y[p, q]$ the unique path from p to q in Y.

We define the Elmore delay from p to a $\operatorname{sink} q \in N \backslash\{p\}$ in Y as

$$
\operatorname{Elmore}_{Y}(p, q):=\sum_{e=(v, w) \in Y[p, q]} \operatorname{res}(e)\left(\frac{\operatorname{cap}(e)}{2}+\operatorname{downcap}(w)\right)
$$

where downcap (q) is $\pi(q)$ if q is a sink pin and

$$
\operatorname{downcap}(w):=\sum_{e=(w, x) \in \delta_{Y}^{+}(w)}(\operatorname{cap}(e)+\operatorname{downcap}(x))
$$

otherwise.
Show that subdividing an edge $e=\{x, y\} \in E(G)$ into edges $e_{1}=\{x, z\}$ and $e_{2}=\{z, y\}$ using a new vertex z with $\operatorname{cap}\left(e_{1}\right)+\operatorname{cap}\left(e_{2}\right)=\operatorname{cap}(e)$, $\operatorname{res}\left(e_{1}\right)+\operatorname{res}\left(e_{2}\right)=\operatorname{res}(e)$ and $\frac{\operatorname{res}\left(e_{1}\right)}{\operatorname{cap}\left(e_{1}\right)}=\frac{\operatorname{res}\left(e_{2}\right)}{\operatorname{cap}\left(e_{2}\right)}$ does not change the Elmore delay.

Exercise 12.3. Let G be an undirected graph with weights, resistances and capacitances w, res, cap: $E \rightarrow \mathbb{R}_{>0}$ on the edges. Let $\alpha>0$. For a path P from a to b in G let

$$
\operatorname{cost}(P):=w(P)+\alpha \operatorname{Elmore}_{P}(a, b),
$$

where P is interpreted as Steiner tree with two terminals rooted at a and $\pi(b)=1$.

Let $s, t \in V(G)$. Assume that $\operatorname{cap}(e)=1$ for all $e \in E(G)$.
Show that one can in polynomial time compute a path P from s to t with minimal cost.

Hint: Use a variation of Dijkstra's algorithm starting from t with labels $(v, \operatorname{downcap}(v))$ for vertices v.

Deadline: July 4, before the lecture. The websites for lecture and exercises can be found at:
http://www.or.uni-bonn.de/lectures/ss23/chipss23_ex.html
In case of any questions feel free to contact me at drees@or.uni-bonn.de.

