Exercise Set 10

Exercise 10.1. Provide an instance of the Simple Global Routing ProbLEM which admits a fractional solution, but no feasible integral solution. Your instance has to satisfy $w(N, e) \leq u(e)$ for each net N and edge e.
(5 points)
Exercise 10.2. Show that the Vertex-Disjoint Paths Problem is NPcomplete even if G is a subgraph of a track graph G_{T} with two routing planes. Recall that in this case G_{T} is a graph $G_{T}=(V, E)$ for some $n_{x}, n_{y} \in \mathbb{N}$ with $V=\left\{1, \ldots, n_{x}\right\} \times\left\{1, \ldots, n_{y}\right\} \times\{1,2\}$ and $E=\left\{\left\{(x, y, z),\left(x^{\prime}, y^{\prime}, z^{\prime}\right)\right\}\right.$: $\left.\left|x-x^{\prime}\right| z+\left|y-y^{\prime}\right|(3-z)+\left|z-z^{\prime}\right|=1\right\}$.
(5 points)
Exercise 10.3. Consider the Escape Routing Problem: We are given a complete 2-dimensional grid graph $G=(V, E)$ (i.e. $V=\{0, \ldots, k-1\} \times$ $\{0, \ldots, k-1\}$ and $E=\{\{v, w\} \mid v, w \in V,\|v-w\|=1\})$ and a set $P=$ $\left\{p_{1}, \ldots, p_{m}\right\} \subseteq V$. The task is to compute vertex-disjoint paths $\left\{q_{1}, \ldots, q_{m}\right\}$ s.t. each q_{i} connects p_{i} with a point on the border $B=\{(x, y) \in V \mid\{x, y\} \cap$ $\{0, k-1\} \neq \emptyset\}$.

Find a polynomial-time algorithm for the Escape Routing Problem or prove that the problem is NP-hard.

Exercise 10.4. Formulate the Simple Global Routing Problem as an integer linear program with a polynomial number of variables and constraints.

Deadline: June 20, before the lecture. The websites for lecture and exercises can be found at:
http://www.or.uni-bonn.de/lectures/ss23/chipss23_ex.html
In case of any questions feel free to contact me at drees@or.uni-bonn.de.

