Exercise Set 7

Exercise 7.1. Let N be a finite set of pins, and let S_p be a set of axis-parallel rectangles for each $p \in N$. We want to compute the *bounding box netlength* of N, i.e. an axis-parallel rectangle R with minimum perimeter s.t. for every $p \in N$ there is an $S \in S_p$ with $R \cap S \neq \emptyset$.

Show how to compute such a rectangle in $O(n^3)$ time where $n := \sum_{p \in N} |S_p|$. (4 points)

Exercise 7.2. Consider quadratic netlength minimization in *x*-dimension based on the (quadratic) CLIQUE netmodel i.e.

$$CLIQUESQ(N) := \sum_{\{p,q\}\subseteq N} \frac{w(N)}{|N| - 1} \left(x(p) + x(\gamma(p)) - x(q) - x(\gamma(q)) \right)^2$$

Show that CLIQUESQ can be replaced equivalently by the quadratic STARSQ netmodel

STARSQ(N) :=
$$w'(N) \cdot \min\left\{\sum_{p \in N} \left(x(p) + x(\gamma(p)) - c\right)^2 \middle| c \in \mathbb{R}\right\}$$

for an appropriate weight function w'.

(4 points)

Deadline: May 23, before the lecture. The websites for lecture and exercises can be found at:

http://www.or.uni-bonn.de/lectures/ss23/chipss23_ex.html

In case of any questions feel free to contact me at drees@or.uni-bonn.de.