Exercise Set 7

Exercise 7.1. Let N be a finite set of pins, and let S_{p} be a set of axis-parallel rectangles for each $p \in N$. We want to compute the bounding box netlength of N, i.e. an axis-parallel rectangle R with minimum perimeter s.t. for every $p \in N$ there is an $S \in S_{p}$ with $R \cap S \neq \emptyset$.
Show how to compute such a rectangle in $O\left(n^{3}\right)$ time where $n:=\sum_{p \in N}\left|S_{p}\right|$.
(4 points)
Exercise 7.2. Consider quadratic netlength minimization in x-dimension based on the (quadratic) Clique netmodel i.e.

$$
\operatorname{CliQUESQ}(N):=\sum_{\{p, q\} \subseteq N} \frac{w(N)}{|N|-1}(x(p)+x(\gamma(p))-x(q)-x(\gamma(q)))^{2}
$$

Show that CLiqueSQ can be replaced equivalently by the quadratic StarSQ netmodel

$$
\operatorname{STARSQ}(N):=w^{\prime}(N) \cdot \min \left\{\sum_{p \in N}(x(p)+x(\gamma(p))-c)^{2} \mid c \in \mathbb{R}\right\}
$$

for an appropriate weight function w^{\prime}.
(4 points)

Deadline: May 23, before the lecture. The websites for lecture and exercises can be found at:
http://www.or.uni-bonn.de/lectures/ss23/chipss23_ex.html
In case of any questions feel free to contact me at drees@or.uni-bonn.de.

