Exercise Set 6

Exercise 6.1. Consider the spreading LP for d = 2:

$$\begin{array}{ll} \min & \sum_{e \in E(G)} w(e) \, l(e) \\ \text{s.t.} & \sum_{y \in X} l(\{x, y\}) \geq \frac{1}{4} \left(|X| - 1 \right)^{3/2} & x \in X \subseteq V(G) \\ & l(\{x, y\}) + l(\{y, z\}) \geq l(\{x, z\}) & x, y, z \in V(G) \\ & l(\{x, y\}) \geq 1 & x, y \in V(G), \; x \neq y \\ & l(\{x, x\}) = 0 & x \in V(G) \end{array}$$

Show that the optimum of the spreading LP is a lower bound for the cost of any 2-dimensional arrangement.

(5 points)

Exercise 6.2. Let $n \ge 4$ be a power of 2 and let $C_n = (V, E)$ be a cycle on n vertices. Let $l: V \times V \to \mathbb{R}_{\ge 0}$ be the metric given by the distances in C_n .

- (a) Give an example of a 2-hierarchically well separated tree (T, r, c) such that V is the set of leaves of T and the induced tree metric l' satisfies
 - $l'(x,y) \ge l(x,y)$ for all $x, y \in V$,
 - $\sum_{\{x,y\}\in E} l'(x,y) \leq \mathcal{O}(\log n) \sum_{\{x,y\}\in E} l(x,y).$
- (b) Show that there exists a randomized polynomial time algorithm that computes a 2-hierarchically well separated tree (T, r, c) such that V is the set of leaves of T and the induced tree metric l' satisfies
 - $l'(x,y) \ge l(x,y)$ for all $x, y \in V$,
 - $\mathbb{E}[l'(x,y)] \leq \mathcal{O}(\log n)l(x,y)$ for all $x, y \in V$.
- (c) Show that there exists no 2-hierarchically well separated tree (T, r, c) such that V is the set of leaves of T and the induced tree metric l' satisfies
 - $l'(x,y) \ge l(x,y)$ for all $x, y \in V$,

• $l'(x,y) \leq \mathcal{O}(\log n)l(x,y)$ for all $x, y \in V$.

(2+2+3 points)

As May 18 is a public holiday, there will be no tutorial for this sheet. As a replacement, there will be individual meetings (in exercise groups) May 19 or May 22 where we discuss your submission, the first programming exercise or material from the lecture. You can select a slot for this meeting at

https://terminplaner6.dfn.de/p/ 205a73659f13c5a279af4552d529ad70-241093

A digital submission by e-mail is recommended for this sheet.

Deadline: May 16, before the lecture. The websites for lecture and exercises can be found at:

http://www.or.uni-bonn.de/lectures/ss23/chipss23_ex.html

In case of any questions feel free to contact me at drees@or.uni-bonn.de.