Exercise Set 5

Exercise 5.1. For a Boolean circuit C with inputs $1, \ldots, n$ and arrival times $t_i \in \mathbb{N}$ $(i = 1, \ldots, n)$, its delay is defined as its depth after prepending a path with t_i circuits to input i $(i = 1, \ldots, n)$.

(a) Show that for n inputs with arrival times $t_i \in \mathbb{N}$ (i = 1, ..., n) there are n-ary AND, OR or XOR circuits over B_2 with delay $d \in \mathbb{N}$ if and only if

$$\sum_{i=1}^{n} 2^{t_i - d} \le 1$$

(b) Provide an algorithm that finds such a circuit in $\mathcal{O}(n \log n)$ time.

(4+2 points)

Exercise 5.2. Provide a polynomial time algorithm for the STANDARD PLACEMENT PROBLEM restricted to instances with only one circuit.

(4 points)

Exercise 5.3. Given a chip area A and a set C of circuits. A movebound for $C \in C$ is a subset $A_C \subseteq A$ in which C must be placed entirely. Assume that the height and width of every circuit is 1 and that A and each movebound A_C ($C \in C$) are axis-parallel rectangles with integral coordinates.

Describe an algorithm with running time polynomial in $|\mathcal{C}|$ that decides whether there is a feasible placement meeting all movebound constraints.

(5 points)

Exercise 5.4. The GRIDDED PLACEMENT PROBLEM is an extension of the STANDARD PLACEMENT PROBLEM with a grid $\Gamma = \Gamma_x \times \Gamma_y$ where $\Gamma_z := \{k \cdot \delta_z : k \in \mathbb{Z}\}$ with $\delta_z \in \mathbb{Z}$ for $z \in \{x, y\}$. In this variant, the lower left corner of each circuit is required to be in Γ .

Prove that the GRIDDED PLACEMENT PROBLEM is NP-hard even if an optimum solution of the associated ungridded placement problem is known. (5 points)

Deadline: May 9, before the lecture. The websites for lecture and exercises can be found at:

http://www.or.uni-bonn.de/lectures/ss23/chipss23_ex.html

In case of any questions feel free to contact me at drees@or.uni-bonn.de.