Exercise Set 3

Exercise 3.1. Let T be an instance of the Rectilinear Steiner Tree Problem and $r \in T$. For a rectilinear Steiner tree Y we denote by $f(Y)$ the maximum length of a path from r to any element of $T \backslash\{r\}$ in Y.
(a) Find an instance where no Steiner tree minimizes both length and f.
(b) Consider the problem of finding a shortest Steiner tree Y minimizing $f(Y)$ among all shortest Steiner trees. Is there always a tree with these properties which is a subgraph of the Hanan grid?

$$
(1+3 \text { points })
$$

Exercise 3.2. Let Y be a Steiner tree for terminal set T with $|T| \geq 2$ in which all leaves are terminals. Prove

$$
\sum_{t \in T}\left(\left|\delta_{Y}(t)\right|-1\right)=k-1
$$

where k is the number of full components of Y.

Exercise 3.3. Let T be a finite set of terminals.
A topology for T is a tree X with $T \subseteq V(X)$, such that all Steiner points (elements of $V(X) \backslash T$) have degree at least 3. A topology is a standard topology if all Steiner points have degree exactly 3 in X and all elements of T are leaves.

We say that a Steiner tree Y has topology X if there is a map $\varphi: V(X) \rightarrow$ $V(Y)$ with $\varphi(t)=t$ for all $t \in T$ such that $\left\{E\left(P_{e}\right): e \in E(X)\right\}$ is a partition of $E(Y)$, where for $e=\{v, w\} \in E(X), P_{e}$ is the path from $\varphi(v)$ to $\varphi(w)$ in Y.

Modify the Dijkstra-Steiner Algorithm such that it finds an optimum Steiner tree with a fixed standard topology in $\mathcal{O}(k(m+n \log n))$ time, where $n=|V(G)|, m=|E(G)|$ and $k=|T|$.

Deadline: April 25, before the lecture. The websites for lecture and exercises can be found at:
http://www.or.uni-bonn.de/lectures/ss23/chipss23_ex.html
In case of any questions feel free to contact me at drees@or.uni-bonn.de.

