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Fxercise Set 10

Exercise 10.1. Consider the 2-EDGE-CONNECTED SPANNING SUBGRAPH PROB-
LEM as the special case of SURVIVABLE NETWORK DESIGN where 7., = 2 for all
z,y € V(G). Show that there exists a combinatorial 2-approximation algorithm
for this problem.

Hint: You may use that there exists a polynomial time algorithm solving the following
problem: Given a directed graph G = (V,E), k € N, a root r € V and edge weigths
c: E — R, find a minimum-weight subgraph H of G such that H contains k edge-
disjoint directed r-v-paths for each v € V.

(5 points)

Exercise 10.2. An instance of PRIZE-COLLECTING STEINER FOREST consists of
an instance of STEINER FOREST plus a penalty 7, ., € Ry for each terminal pair
{v,w}. The goal is to find a spanning forest H which minimizes ¢(E(H)) + n(H),
where 7(H) is the sum of penalties of terminal pairs that are not in the same
connected component of H. The natural LP relaxation is:

mine' z + 7' 2
st > Tetzpwr =1 YoeUcV(G)\{w}
e€d(U)
x,z>0

Consider the following threshold rounding approach: Let (z,z) be an optimum
solution to the above LP. For some 0 < o < 1, set a, := 1_1a -z, for all e; then

7' is a feasible solution to the LP relaxation of the STEINER FOREST PROBLEM
from the lecture restricted to the terminal pairs {v,w} for which zf, .y < o

(a) Show that for @ = 3 this yields a 3-factor approximation algorithm for
PRIZE-COLLECTING STEINER FOREST.

(b) Show that by choosing « uniformly in [0,~] for a good choice of v € (0, 1),
one can obtain a randomized 176%,1/2—factor approximation algorithm. (Note
that it is possible to derandomize but you do not need to do that here.)

(243 points)
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Exercise 10.3. Consider the POINT-T0-POINT CONNECTION PROBLEM: Given
an undirected graph G with edge weights ¢ : E(G) — R, and sets S,T C V(G)
with SNT = () and |S| = |T| > 1, find a set F' C E(G) of minimum cost such that
there is a bijection 7 : S — T and paths from s to 7(s) for all s € S in (V(G), F).

Show that f(X) =1if |XNS| # |XNT|and f(X) = 0 otherwise defines a proper
function.
(5 points)

Exercise 10.4.

2o >0 (e € B(Q))

Find an optimum basic solution x for the above linear program, where G is the
Petersen graph (see figure below) and f(S) = 1 for all ) # S € V(G). Find a
maximal laminar family B of tight sets with respect to = such that the vectors
Y'B) B € B, are linearly independent.

(5 points)

Submission: You can submit your solutions in groups of 2 people, either on paper
in the lecture or via upload on Sciebo (link on website, late submissions after 2.15
pm will not be considered).

Deadline: Tuesday, June 20", before the lecture. The websites for lecture and
exercises can be found at:

https://www.or.uni-bonn.de/lectures/ss23/ss23.html

In case of any questions feel free to contact me at ellerbrock@or.uni-bonn.de.
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