Exercise Set 10

Exercise 10.1. Consider the 2-Edge-Connected Spanning Subgraph Problem as the special case of Survivable Network Design where $r_{x y}=2$ for all $x, y \in V(G)$. Show that there exists a combinatorial 2-approximation algorithm for this problem.

Hint: You may use that there exists a polynomial time algorithm solving the following problem: Given a directed graph $G=(V, E), k \in \mathbb{N}$, a root $r \in V$ and edge weigths $c: E \rightarrow \mathbb{R}$, find a minimum-weight subgraph H of G such that H contains k edgedisjoint directed r-v-paths for each $v \in V$.

Exercise 10.2. An instance of Prize-Collecting Steiner Forest consists of an instance of Steiner Forest plus a penalty $\pi_{\{v, w\}} \in \mathbb{R}_{+}$for each terminal pair $\{v, w\}$. The goal is to find a spanning forest H which minimizes $c(E(H))+\pi(H)$, where $\pi(H)$ is the sum of penalties of terminal pairs that are not in the same connected component of H. The natural LP relaxation is:

$$
\begin{array}{r}
\min c^{\top} x+\pi^{\top} z \\
\text { s.t. } \sum_{e \in \delta(U)} x_{e}+z_{\{v, w\}} \geq 1 \quad \forall v \in U \subset V(G) \backslash\{w\} \\
x, z \geq 0
\end{array}
$$

Consider the following threshold rounding approach: Let (x, z) be an optimum solution to the above LP. For some $0 \leq \alpha<1$, set $x_{e}^{\prime}:=\frac{1}{1-\alpha} \cdot x_{e}$ for all e; then x^{\prime} is a feasible solution to the LP relaxation of the Steiner Forest Problem from the lecture restricted to the terminal pairs $\{v, w\}$ for which $z_{\{v, w\}} \leq \alpha$.
(a) Show that for $\alpha=\frac{1}{3}$ this yields a 3 -factor approximation algorithm for Prize-Collecting Steiner Forest.
(b) Show that by choosing α uniformly in $[0, \gamma]$ for a good choice of $\gamma \in(0,1)$, one can obtain a randomized $\frac{1}{1-e^{-1 / 2}}$-factor approximation algorithm. (Note that it is possible to derandomize but you do not need to do that here.)

Exercise 10.3. Consider the Point-To-Point Connection Problem: Given an undirected graph G with edge weights $c: E(G) \rightarrow \mathbb{R}_{+}$and sets $S, T \subseteq V(G)$ with $S \cap T=\emptyset$ and $|S|=|T| \geq 1$, find a set $F \subseteq E(G)$ of minimum cost such that there is a bijection $\pi: S \rightarrow T$ and paths from s to $\pi(s)$ for all $s \in S$ in $(V(G), F)$. Show that $f(X)=1$ if $|X \cap S| \neq|X \cap T|$ and $f(X)=0$ otherwise defines a proper function.

Exercise 10.4.

$$
\begin{aligned}
& \min \sum_{e \in E(G)} x_{e} \\
& \text { s.t. } \sum_{e \in \delta(S)} x_{e} \geq f(S) \quad(S \subseteq V(G)) \\
& x_{e} \geq 0(e \in E(G))
\end{aligned}
$$

Find an optimum basic solution x for the above linear program, where G is the Petersen graph (see figure below) and $f(S)=1$ for all $\emptyset \neq S \subsetneq V(G)$. Find a maximal laminar family \mathcal{B} of tight sets with respect to x such that the vectors $\chi^{\delta(B)}, B \in \mathcal{B}$, are linearly independent.

Submission: You can submit your solutions in groups of 2 people, either on paper in the lecture or via upload on Sciebo (link on website, late submissions after 2.15 pm will not be considered).

Deadline: Tuesday, June $20^{\text {th }}$, before the lecture. The websites for lecture and exercises can be found at:
https://www.or.uni-bonn.de/lectures/ss23/ss23.html

In case of any questions feel free to contact me at ellerbrock@or.uni-bonn.de.

