Exercise Set 8

Exercise 8.1. Let (U, \mathcal{S}, c) be an instance of MINIMUM WEIGHT SET COVER and $p := \max_{S \in \mathcal{S}} |S|$. Assume w.l.o.g. that for every set $S \in \mathcal{S}$ also all its subsets $R \subseteq S$ are present in \mathcal{S} and we have $c(R) \leq c(S)$. Consider the following algorithm:

- 1. Let \mathcal{R} be an arbitrary set cover solution, where w.l.o.g. \mathcal{R} is a partition of U.
- **2.** Do the following as long as it decreases the potential function $\Phi(\mathcal{R}) := \sum_{R \in \mathcal{R}} H_{|R|} \cdot c(R)$:
 - For each set $R \in \mathcal{R}$, define $\overline{c}(u) \coloneqq \frac{1}{|R|} \cdot c(R)$ for all $u \in R$.
 - Choose $S \in \mathcal{S}$ that minimizes $H_{|S|} \cdot c(S) \sum_{u \in S} \overline{c}(u)$.
 - Replace every set $R \in \mathcal{R}$ by $R \setminus S$.
 - Add S to \mathcal{R} .

3. Return \mathcal{R} .

- (a) Prove that the above algorithm terminates in finite time.
- (b) Prove that the output \mathcal{R} of the above algorithm satisfies $c(\mathcal{R}) \leq H_p \cdot \text{OPT}$, where OPT denotes the value of an optimum solution.
- (c) How can the above algorithm be modified to run in polynomial time while losing only an arbitrarily small error of $\varepsilon > 0$ in the approximation ratio?

(1+4+2 points)

Exercise 8.2. Consider an undirected graph G = (V, E) with non-negative edge weights $c : E \to \mathbb{R}_+$ and terminal set $T \subseteq V$. The BOTTLENECK STEINER TREE PROBLEM asks for a Steiner tree S for T in G whose bottleneck weight $\max_{e \in E(S)} c(e)$ is minimum.

Show that BOTTLENECK STEINER TREE can be solved in polynomial time.

(3 points)

Exercise 8.3. Consider an instance $(G, c : E(G) \to \mathbb{R}_+, T \subseteq V(G))$ of STEINER TREE and let $r \in T$ be an arbitrarily chosen root. Let

$$LP = \min\left\{c(x) : \sum_{e \in \delta(U)} x_e \ge 1 \text{ for } U \subseteq V(G) \setminus \{r\} \text{ with } U \cap T \neq \emptyset, x \ge 0\right\}.$$

Now we replace every edge $\{v,w\}$ by two directed edges (v,w) and (w,v) (with cost $c(\{v,w\}).$ Let

BCR = min
$$\left\{ c(x) : \sum_{e \in \delta^{-}(U)} x_e \ge 1 \text{ for } U \subseteq V(G) \setminus \{r\} \text{ with } U \cap T \neq \emptyset, x \ge 0 \right\}.$$

- (a) Prove that the value BCR is independent of the choice of the root $r \in T$.
- (b) What is the supremum of $\frac{BCR}{LP}$ over all instances (with $LP \neq 0$)?

(3+2 points)

Exercise 8.4. Let G = (V, E) be an undirected graph. For a partition \mathcal{P} of the vertex set V, let

$$\delta(\mathcal{P}) := \{ e \in E : e \in \delta(U) \text{ for some } U \in \mathcal{P} \}.$$

Prove:

$$\left\{ x \in [0,1]^E : \sum_{e \in E} x_e = |V(G)| - 1, \sum_{e \in E(G[X])} x_e \le |X| - 1 \text{ for } \emptyset \neq X \subsetneq V(G) \right\}$$
$$= \left\{ x \in [0,1]^E : \sum_{e \in E} x_e = |V(G)| - 1, \sum_{e \in \delta(\mathcal{P})} x_e \ge |\mathcal{P}| - 1 \text{ for every partition } \mathcal{P} \text{ of } V \right\}$$
(5 points)

Submission: You can submit your solutions in groups of 2 people, either on paper in the lecture or via upload on Sciebo (link on website, late submissions after 2.15 pm will not be considered).

Deadline: Tuesday, June 6^{th} , before the lecture. The websites for lecture and exercises can be found at:

https://www.or.uni-bonn.de/lectures/ss23/ss23.html

In case of any questions feel free to contact me at ellerbrock@or.uni-bonn.de.