Exercise Set 8

Exercise 8.1. Let (U, \mathcal{S}, c) be an instance of Minimum Weight Set Cover and $p:=\max _{S \in \mathcal{S}}|S|$. Assume w.l.o.g. that for every set $S \in \mathcal{S}$ also all its subsets $R \subseteq S$ are present in \mathcal{S} and we have $c(R) \leq c(S)$. Consider the following algorithm:

1. Let \mathcal{R} be an arbitrary set cover solution, where w.l.o.g. \mathcal{R} is a partition of U.
2. Do the following as long as it decreases the potential function $\Phi(\mathcal{R}):=\sum_{R \in \mathcal{R}} H_{|R|} \cdot c(R):$

- For each set $R \in \mathcal{R}$, define $\bar{c}(u):=\frac{1}{|R|} \cdot c(R)$ for all $u \in R$.
- Choose $S \in \mathcal{S}$ that minimizes $H_{|S|} \cdot c(S)-\sum_{u \in S} \bar{c}(u)$.
- Replace every set $R \in \mathcal{R}$ by $R \backslash S$.
- Add S to \mathcal{R}.

3. Return \mathcal{R}.
(a) Prove that the above algorithm terminates in finite time.
(b) Prove that the output \mathcal{R} of the above algorithm satisfies $c(\mathcal{R}) \leq H_{p}$. OPT, where OPT denotes the value of an optimum solution.
(c) How can the above algorithm be modified to run in polynomial time while losing only an arbitrarily small error of $\varepsilon>0$ in the approximation ratio?

$$
\text { (} 1+4+2 \text { points })
$$

Exercise 8.2. Consider an undirected graph $G=(V, E)$ with non-negative edge weights $c: E \rightarrow \mathbb{R}_{+}$and terminal set $T \subseteq V$. The Bottleneck Steiner Tree Problem asks for a Steiner tree S for T in G whose bottleneck weight $\max _{e \in E(S)} c(e)$ is minimum.

Show that Bottleneck Steiner Tree can be solved in polynomial time.

Exercise 8.3. Consider an instance $\left(G, c: E(G) \rightarrow \mathbb{R}_{+}, T \subseteq V(G)\right)$ of Steiner Tree and let $r \in T$ be an arbitrarily chosen root. Let

$$
\mathrm{LP}=\min \left\{c(x): \sum_{e \in \delta(U)} x_{e} \geq 1 \text { for } U \subseteq V(G) \backslash\{r\} \text { with } U \cap T \neq \emptyset, x \geq 0\right\} .
$$

Now we replace every edge $\{v, w\}$ by two directed edges (v, w) and (w, v) (with cost $c(\{v, w\})$. Let
$\mathrm{BCR}=\min \left\{c(x): \sum_{e \in \delta^{-}(U)} x_{e} \geq 1\right.$ for $U \subseteq V(G) \backslash\{r\}$ with $\left.U \cap T \neq \emptyset, x \geq 0\right\}$.
(a) Prove that the value BCR is independent of the choice of the root $r \in T$.
(b) What is the supremum of $\frac{\mathrm{BCR}}{\mathrm{LP}}$ over all instances (with LP $\neq 0$)?

Exercise 8.4. Let $G=(V, E)$ be an undirected graph. For a partition \mathcal{P} of the vertex set V, let

$$
\delta(\mathcal{P}):=\{e \in E: e \in \delta(U) \text { for some } U \in \mathcal{P}\} .
$$

Prove:

$$
\begin{aligned}
& \left\{x \in[0,1]^{E}: \sum_{e \in E} x_{e}=|V(G)|-1, \sum_{e \in E(G[X])} x_{e} \leq|X|-1 \text { for } \emptyset \neq X \subsetneq V(G)\right\} \\
= & \left\{x \in[0,1]^{E}: \sum_{e \in E} x_{e}=|V(G)|-1, \sum_{e \in \delta(\mathcal{P})} x_{e} \geq|\mathcal{P}|-1 \text { for every partition } \mathcal{P} \text { of } V\right\}
\end{aligned}
$$

Submission: You can submit your solutions in groups of 2 people, either on paper in the lecture or via upload on Sciebo (link on website, late submissions after 2.15 pm will not be considered).

Deadline: Tuesday, June $6^{\text {th }}$, before the lecture. The websites for lecture and exercises can be found at:
https://www.or.uni-bonn.de/lectures/ss23/ss23.html

In case of any questions feel free to contact me at ellerbrock@or.uni-bonn.de.

