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Exercise Set 3

Exercise 3.1. Consider the following local search algorithm for the (unweighted)
MaxiMuM CuUT problem: Start with an arbitrary vertex set S C V. Iterate the
following: If a single vertex can be added to S or can be removed from S such
that |d(59)| increases, do so. If no such vertex exists, terminate and return §(5).

(a) Prove that this algorithm is a 2-approximation algorithm. (In particular,
show that it runs in polynomial time.)

(b) Find an example that proves that the analysis is tight, even if we start with
S = 0.

(¢) Does the algorithm always find an optimum solution for planar graphs or
bipartite graphs?

(d) Give a linear-time 2-approximation algorithm for the MAximumM CuUT prob-
lem in graphs with nonnegative edge weights.

(e) Is your analysis tight? If yes, provide a suitable example with |V(G)| = 3.

(f) In the DIRECTED MAXIMUM WEIGHT CUT PROBLEM we are given a di-
graph G with weights ¢ : F(G) — R, and we are searching for a set X C
V(G) that maximizes > c5+(x)c(e). Show that there is a 4-approximation
algorithm for this problem.

(24242424142 points)
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Exercise 3.2. The KNAPSACK PROBLEM can be formulated as the following
integer program:

i=1 i=1
For an instance Z, denote the optimum of (1)) by OPT(Z) and let LP(Z) be the
optimum of the linear relaxation, where x; € {0,1} is replaced by 0 < z; < 1.

Show that the integrality gap

LP(Z)
————— : OPT(Z) #0
Sgp{OPT(I) ) # }
of the KNAPSACK PROBLEM is unbounded. What is the integrality gap of the
KNAPSACK PROBLEM restricted to instances with w; < W for alli =1,...,n?

(3 points)

Exercise 3.3. (a) Consider the FRACTIONAL MuLTI KNAPSACK PROBLEM:
Given natural numbers n,m € N and w;, ¢;; € N as well as W; € N for 1 <
i <nand1<j<m, find z;; satisfying 3>, z;; = 1 for all 1 <4 < n and
Y wjw; < Wy for all 1 < j <m such that 37" | 37" @5¢;5 is minimum,

State a polynomial-time combinatorial algorithm for this problem.
(Do not use that a linear program can be solved in polynomial time.)

(b) Can we solve the integral MULTI KNAPSACK PROBLEM in pseudopolynomial
time if m is fixed?
(4+2 points)

Submission: You can submit your solutions in groups of 2 people, either on paper
in the lecture or via upload on Sciebo to

https://uni-bonn.sciebo.de/s/omVU1VMioEQwDa0
(late submissions after 2.15 pm will not be considered).
Deadline: Tuesday, April 25", before the lecture. The websites for lecture and
exercises can be found at:
https://www.or.uni-bonn.de/lectures/ss23/ss23.html

In case of any questions feel free to contact me at ellerbrock@or.uni-bonn.de.
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