Exercise Set 3

Exercise 3.1. Consider the following local search algorithm for the (unweighted) Maximum Cut problem: Start with an arbitrary vertex set $S \subseteq V$. Iterate the following: If a single vertex can be added to S or can be removed from S such that $|\delta(S)|$ increases, do so. If no such vertex exists, terminate and return $\delta(S)$.
(a) Prove that this algorithm is a 2 -approximation algorithm. (In particular, show that it runs in polynomial time.)
(b) Find an example that proves that the analysis is tight, even if we start with $S=\emptyset$.
(c) Does the algorithm always find an optimum solution for planar graphs or bipartite graphs?
(d) Give a linear-time 2-approximation algorithm for the Maximum Cut problem in graphs with nonnegative edge weights.
(e) Is your analysis tight? If yes, provide a suitable example with $|V(G)|=3$.
(f) In the Directed Maximum Weight Cut Problem we are given a digraph G with weights $c: E(G) \rightarrow \mathbb{R}_{+}$and we are searching for a set $X \subseteq$ $V(G)$ that maximizes $\sum_{e \in \delta^{+}(X)} c(e)$. Show that there is a 4 -approximation algorithm for this problem.

$$
(2+2+2+2+1+2 \text { points })
$$

Exercise 3.2. The Knapsack Problem can be formulated as the following integer program:

$$
\begin{equation*}
\max \left\{\sum_{i=1}^{n} c_{i} x_{i}: \sum_{i=1}^{n} w_{i} x_{i} \leq W, x_{i} \in\{0,1\} \forall 1 \leq i \leq n\right\} \tag{1}
\end{equation*}
$$

For an instance \mathcal{I}, denote the optimum of (1) by $\operatorname{OPT}(\mathcal{I})$ and let $\operatorname{LP}(\mathcal{I})$ be the optimum of the linear relaxation, where $x_{i} \in\{0,1\}$ is replaced by $0 \leq x_{i} \leq 1$.
Show that the integrality gap

$$
\sup _{\mathcal{I}}\left\{\frac{\operatorname{LP}(\mathcal{I})}{\operatorname{OPT}(\mathcal{I})}: \operatorname{OPT}(\mathcal{I}) \neq 0\right\}
$$

of the Knapsack Problem is unbounded. What is the integrality gap of the Knapsack Problem restricted to instances with $w_{i} \leq W$ for all $i=1, \ldots, n$?

Exercise 3.3. (a) Consider the Fractional Multi Knapsack Problem: Given natural numbers $n, m \in \mathbb{N}$ and $w_{i}, c_{i j} \in \mathbb{N}$ as well as $W_{j} \in \mathbb{N}$ for $1 \leq$ $i \leq n$ and $1 \leq j \leq m$, find $x_{i j}$ satisfying $\sum_{j=1}^{m} x_{i j}=1$ for all $1 \leq i \leq n$ and $\sum_{i=1}^{n} x_{i j} w_{i} \leq W_{j}$ for all $1 \leq j \leq m$ such that $\sum_{i=1}^{n} \sum_{j=1}^{m} x_{i j} c_{i j}$ is minimum.
State a polynomial-time combinatorial algorithm for this problem.
(Do not use that a linear program can be solved in polynomial time.)
(b) Can we solve the integral Multi Knapsack Problem in pseudopolynomial time if m is fixed?

$$
(4+2 \text { points })
$$

Submission: You can submit your solutions in groups of 2 people, either on paper in the lecture or via upload on Sciebo to
https://uni-bonn.sciebo.de/s/omVU1VMioEQwDa0
(late submissions after 2.15 pm will not be considered).

Deadline: Tuesday, April $25^{\text {th }}$, before the lecture. The websites for lecture and exercises can be found at:
https://www.or.uni-bonn.de/lectures/ss23/ss23.html

In case of any questions feel free to contact me at ellerbrock@or.uni-bonn.de.

