Exercise Set 2

Exercise 2.1. Prove: If there is a 2-approximation algorithm for the maximum stable set problem, there is also a $(1+\epsilon)$ -approximation algorithm for every $\epsilon > 0$. (4 points)

Exercise 2.2. For $k \in \mathbb{N}$ consider the following problem:

- **Instance:** A set U and a set S of subsets of U with $|S| \le k$ for all $S \in S$, weights $w : U \to \mathbb{R}_{\ge 0}$.
- **Task:** Find $T \subseteq U$ such that $T \cap S \neq \emptyset$ for each $S \in S$ and $\sum_{t \in T} w(t)$ minimum.
- (i) Show that this problem is NP-hard for $k \ge 2$.
- (ii) Give a polynomial time k-factor approximation algorithm.
- (iii) Give a linear time k-factor approximation algorithm for the special case that w(t) = 1 for $t \in U$.

(1+2+2 points)

Exercise 2.3. Consider the standard IP formulation of the MINIMIM WEIGHT SET COVER PROBLEM, and its LP-relaxation

$$\min\left\{cx : \sum_{S \in \mathcal{S}: e \in S} x_S \ge 1 \text{ for all } e \in U, \ x_S \ge 0 \text{ for all } S \in \mathcal{S}\right\}.$$

Consider the algorithm that picks all sets associated with non-zero values in an optimum solution to the LP-relaxation. Show that this algorithm achieves an approximation guarantee of p if each element $e \in U$ is contained in at most p sets. (3 points) Exercise 2.4. Consider the following variant of SET COVER:

Instance: A set U, a set S of subsets of U with $\bigcup_{S \in S} S = U$, an integer $k \in \mathbb{N}$. **Task:** Find k sets $S_1, \ldots, S_k \in S$ such that $\left| \bigcup_{j=1}^k S_j \right|$ is maximum.

Show that iteratively picking the set that maximizes the number of not yet covered elements is a $\left(\frac{e}{e-1}\right)$ -approximation.

(4 points)

Exercise 2.5. The restriction of SATISFIABILITY to instances where each clause consists of exactly two literals is called 2-SATISFIABILITY.

Prove that 2-SATISFIABILITY is in P.

(4 points)

Submission: You can submit your solutions in groups of 2 people, either on paper in the lecture or via upload on Sciebo to

https://uni-bonn.sciebo.de/s/omVU1VMioEQwDa0

(late submissions after 2.15 pm will not be considered).

Deadline: Tuesday, April 18th, before the lecture. The websites for lecture and exercises can be found at:

https://www.or.uni-bonn.de/lectures/ss23/ss23.html

In case of any questions feel free to contact me at ellerbrock@or.uni-bonn.de.