Linear and Integer Optimization
 Assignment Sheet 11
 Inofficial English Translation

1. Let $a, b \in \mathbb{R}_{>0}$ and $\left\{s_{1}, \ldots, s_{37}\right\} \subset \mathbb{R}$. Show that for variables x, y the following constraints can be encoded in a MILP (by adding additional variables):
(a) $(x \geq a$ or $y \geq b)$ and $x, y \geq 0$.
(b) $x \in\left\{s_{1}, \ldots, s_{37}\right\}$
2. Show that in the inequality

$$
\max \left\{c^{t} x \mid A x \leq b x \in \mathbb{Z}^{n}\right\} \leq \min \left\{b^{t} y \mid A^{t} y=c, y \geq y \in \mathbb{Z}^{m}\right\}
$$

in general, equality does not hold, even if the two corresponding optimization problems are feasible and bounded.
(2 points)
3. (a) Prove that a polyhedral cone is rational if and only if it is generated by a finite number of integral vectors. Conclude that $C_{I}=C$ for any rational cone C.
(b) Let $P, Q \subseteq \mathbb{R}^{n}$ be two polyhedra. Show that $P_{I}+Q_{I} \subseteq(P+Q)_{I}$. Give an example where $P_{I}+Q_{I} \neq(P+Q)_{I}$.
4. Give an example each of
(a) a full-dimensional unbounded rational polyhedron P such that P_{I} is empty.
(b) an unbounded polyhedron P such that P_{I} is non-empty and bounded.
(c) a polyhedron P such that $P_{I} \neq \emptyset$ is not closed.
(d) a feasible and bounded ILP without optimum solution. $(1+2+2+2$ points $)$
5. Let $P=\left\{x \in \mathbb{R}^{k+l}: A x \leq b\right\}$ be a rational polyhedron (i.e. $\left.A \in \mathbb{Q}^{m \times(k+l)}, b \in \mathbb{Q}^{m}\right)$. Show that $\operatorname{conv}\left(P \cap\left(\mathbb{Z}^{k} \times \mathbb{R}^{l}\right)\right)$ is a rational polyhedron.
(4 points)

Due date: Thursday, June 30, 2022, before the lecture in the lecture hall.

