Summer term 2022 Dr. U. Brenner

Linear and Integer Optimization Assignment Sheet 9 Inofficial English Translation

1. Consider the following optimization problem:

$$\min \quad \frac{c^t x + d}{f^t x + g} \\ \text{s.t.} \quad Ax \le b \\ \|x\|_{\infty} \le R$$

where $c, f \in \mathbb{Q}^n, d, g, R \in \mathbb{Q}, A \in \mathbb{Q}^{m \times n}, b \in \mathbb{Q}^m$. You may assume that $f^t x + g > 0$ and $c^t x + d > 0$ for any $x \in \mathbb{R}^n$ with $||x||_{\infty} \leq R$ and that there is a feasible solution. Show that for any $\epsilon > 0$ there is a polynomial-time algorithm computing a feasible solution x^* with $\frac{c^t x^* + d}{f^t x^* + g} \leq \text{OPT}(1 + \epsilon)$ where OPT is the value of an optimum solution. (5 points)

2. Let $K \subseteq \mathbb{R}^n$ be an *r*-*R*-sandwiched convex set, $c \in \mathbb{R}^n$, $\delta = \sup\{c^t x \mid x \in K\}$, and $0 < \epsilon < \delta$. Moreover, let $U = \{x \in K \mid c^t x \ge \delta - \epsilon\}$. Prove that

volume
$$(U) \ge \left(\frac{\epsilon}{2\|c\|R\|}\right)^{n-1} r^{n-1} \frac{1}{n^n} \frac{\epsilon}{2\|c\|} \frac{1}{n}.$$

(5 points)

- 3. Determine numbers k and l as small as possible such that a given feasible and bounded linear program $\max\{c^t x \mid Ax \leq b\}$ with $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$ and $c \in \mathbb{Q}^n$ can be solved in time $O((m + n)^k(\operatorname{size}(A) + \operatorname{size}(b) + \operatorname{size}(c))^l)$ by applying the ELLIPSOID ALGORITHM. (6 points)
- 4. Consider the following primal-dual pair of linear programs: (P): $\max\{c^t x \mid Ax + s = b, s \ge 0\}$ and (D): $\min\{b^t y \mid A^t y = c, y \ge 0\}$ with $A \in \mathbb{R}^{m \times n}$. Assume that both LPs are feasible. By strict complementary slackness, there is a partitioning $\{1, \ldots, m\} = B \cup N$ such that for $i \in B$ there is an optimum dual solution y^* with $y_i^* > 0$ and for $i \in N$ there is an optimum primal solution x^*, s^* with $s_i^* > 0$. Describe a linear program such that any optimum solution of it directly gives you the set B and N. (4 points)

Due date: Tuesday, June 14, 2022, before the lecture in the lecture hall.