Linear and Integer Optimization
 Assignment Sheet 9
 Inofficial English Translation

1. Consider the following optimization problem:

$$
\begin{aligned}
\min & \frac{c^{t} x+d}{f^{t} t x g} \\
\text { s.t. } & A x \leq b \\
& \|x\|_{\infty} \leq R
\end{aligned}
$$

where $c, f \in \mathbb{Q}^{n}, d, g, R \in \mathbb{Q}, A \in \mathbb{Q}^{m \times n}, b \in \mathbb{Q}^{m}$. You may assume that $f^{t} x+g>0$ and $c^{t} x+d>0$ for any $x \in \mathbb{R}^{n}$ with $\|x\|_{\infty} \leq R$ and that there is a feasible solution. Show that for any $\epsilon>0$ there is a polynomial-time algorithm computing a feasible solution x^{*} with $\frac{c^{t} x^{*}+d}{f^{t} x^{*}+g} \leq \mathrm{OPT}(1+\epsilon)$ where OPT is the value of an optimum solution.
2. Let $K \subseteq \mathbb{R}^{n}$ be an r - R-sandwiched convex set, $c \in \mathbb{R}^{n}, \delta=\sup \left\{c^{t} x \mid x \in K\right\}$, and $0<\epsilon<\delta$. Moreover, let $U=\left\{x \in K \mid c^{t} x \geq \delta-\epsilon\right\}$. Prove that

$$
\text { volume }(U) \geq\left(\frac{\epsilon}{2\|c\| R \|}\right)^{n-1} r^{n-1} \frac{1}{n^{n}} \frac{\epsilon}{2\|c\|} \frac{1}{n}
$$

3. Determine numbers k and l as small as possible such that a given feasible and bounded linear program $\max \left\{c^{t} x \mid A x \leq b\right\}$ with $A \in \mathbb{Q}^{m \times n}, b \in \mathbb{Q}^{m}$ and $c \in \mathbb{Q}^{n}$ can be solved in time $O((m+$ $\left.n)^{k}(\operatorname{size}(A)+\operatorname{size}(b)+\operatorname{size}(c))^{l}\right)$ by applying the Ellipsoid Algorithm.
4. Consider the following primal-dual pair of linear programs: (P): $\max \left\{c^{t} x \mid A x+s=b, s \geq 0\right\}$ and (D): $\min \left\{b^{t} y \mid A^{t} y=c, y \geq 0\right\}$ with $A \in \mathbb{R}^{m \times n}$. Assume that both LPs are feasible. By strict complementary slackness, there is a partitioning $\{1, \ldots, m\}=B \dot{\cup} N$ such that for $i \in B$ there is an optimum dual solution y^{*} with $y_{i}^{*}>0$ and for $i \in N$ there is an optimum primal solution x^{*}, s^{*} with $s_{i}^{*}>0$. Describe a linear program such that any optimum solution of it directly gives you the set B and N.
(4 points)

Due date: Tuesday, June 14, 2022, before the lecture in the lecture hall.

