Linear and Integer Optimization
 Assignment Sheet 8
 Inofficial English Translation

1. Let G be simple undirected graph. Consider the following linear program:

$$
\begin{array}{rlrl}
\min & \sum_{e=\{v, w\} \in E(G)} x_{v w} & & \\
\text { s.t. } & \sum_{w \in S} x_{v w} & \geq\left\lceil\frac{1}{4}|S|^{2}+\frac{1}{2}|S|\right\rceil & \\
\text { for } v \in V(G), S \subseteq V(G) \backslash\{v\} \\
& x_{u w} & \leq x_{u v}+x_{v w} & \\
\text { for } u, v, w \in V(G) \\
x_{v w} & \geq 0 & & \text { for } v \in V(G) \\
x_{v v} & =0 & & \text { for } v \in V(G)
\end{array}
$$

(a) Show that this is a relaxation of the following problem: Find distances $x_{v w}$ for the nodes of G such that $\sum_{e=\{v, w\} \in E(G)} x_{v w}$ is minimized under the condition that there is an ordering $\left\{v_{1}, \ldots, v_{|V(G)|}\right\}=V(G)$ with $x_{v_{i} v_{j}}=|i-j|$ for $i, j \in\{1, \ldots,|V(G)|\}$.
(b) Prove that there is a polynomial-time separation oracle for the polyhedron of the feasible solutions of the LP.
($2+3$ points)
2. A semidefinite program is an optimization problem

$$
\begin{aligned}
\min C \star X & \\
A_{i} \star X & \leq b_{i} \\
X & \succeq 0 \\
X & \in \mathbb{R}^{n \times n}
\end{aligned} \quad \forall i=1, \ldots, m
$$

where C, A_{1}, \ldots, A_{n} are matrices, $A \star X:=\sum_{1 \leq i, j \leq n} a_{i j} x_{i j}$ and $X \succeq 0$ means that X is symmetric and positiv semidefinite.
(a) Show that the set $\left\{X \in \mathbb{R}^{n \times n} \mid X \succeq 0\right\}$ is a closed cone.
(b) Construct a polynomial-time separation oracle for this set. (You may assume that you can compute basic arithmetic operations on real numbers, including square roots, exactly and in constant time.)
($3+3$ points)
3. Let \mathcal{A} be an algorithm that finds, given a feasiable and bounded $\mathrm{LP} \max \left\{c^{t} x \in \mathbb{R}^{n} \mid A x \leq b\right\}$ (with $c \in \mathbb{Q}^{n}, A \in \mathbb{Q}^{m \times n}$ and $b \in \mathbb{Q}^{m}$) in polynomial running time an optimum solution. Show that there is a polynomial algorithm that always finds an optimum solution that is a vertex of $P=\left\{x \in \mathbb{R}^{n} \mid A x \leq b\right\}$, provided that P is pointed.
4. Let $K \subseteq \mathbb{R}^{n}$ be a convex set with $r B^{n} \subseteq K \subseteq R B^{n}$ for some numbers $0<r \leq \frac{R}{2}$. Assume that you are given an oracle with polynomial running time that computes an optimum solution in K for any linear objective function. Show that there is a separation oracle with polynomial running time for $K^{*}:=\left\{y \in \mathbb{R}^{n} \mid y^{t} x \leq 1\right.$ for all $\left.x \in K\right\}$.

Due date: Thursday, June 2, 2022, before the lecture in the lecture hall.

