# Linear and Integer Optimization <br> Assignment Sheet 7 <br> Inofficial English Translation 

1. Show for $A \in \mathbb{Q}^{n \times n}$ the following statements:
(a) $\operatorname{size}(\operatorname{det}(A)) \leq 2 \operatorname{size}(A)$.
(b) If $A$ is regular then $\operatorname{size}\left(A^{-1}\right) \leq 4 n^{2} \operatorname{size}(A)$.
2. Let $A:=\left(\begin{array}{rr}1 & 0 \\ 0 & 1 \\ s & -1\end{array}\right)$ and $b:=\left(\begin{array}{r}1 \\ 1 \\ -1\end{array}\right)$.

Use the Idealized Ellipsoid Algorithm with $R=2$ to compute a feasible solution in $P=$ $\left\{x \in \mathbb{R}^{2} \mid A x \leq b\right\}$ for $s=-1$ and for $s=-2$.
3. Define $\|A\|:=\max _{\|x\|=1}\|A x\|$ for $A \in \mathbb{R}^{n \times n}$, where $\|\cdot\|: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is the standard Euclidean norm. Prove:
(a) $\|A\|$ is a norm
(b) $\left\|a a^{t}\right\|=a^{t} a$
(c) $\|A\|=\max \left\{x^{t} A x \mid\|x\|=1\right\}$ if $A$ is positive semidefinite
(d) $\|A\| \leq\|A+B\|$ if $A$ and $B$ are positiv semidefinite.
4. Show that $|\operatorname{det}(A)| \leq \prod_{i=1}^{n}\left\|a_{i}\right\|$ for an $n \times n$-matrix $A$ with columns $a_{1}, \ldots, a_{n}$ (where $\|\cdot\|: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is again the standard Euclidean norm).
(2 points)

Due date: Tuesday, May 24, 2022, before the lecture in the lecture hall.

