(4 points)

Summer term 2022 Dr. U. Brenner

Linear and Integer Optimization Assignment Sheet 7 Inofficial English Translation

- 1. Show for $A \in \mathbb{Q}^{n \times n}$ the following statements:
 - (a) size(det(A)) ≤ 2 size(A).
 - (b) If A is regular then size $(A^{-1}) \leq 4n^2$ size(A). (2+1 points)

2. Let $A := \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ s & -1 \end{pmatrix}$ and $b := \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}$. Use the IDEALIZED ELLIPSOID ALGORITHM with R = 2 to compute a feasible solution in P = $\{x \in \mathbb{R}^2 \mid Ax < b\}$ for s = -1 and for s = -2.

- 3. Define $||A|| := \max_{||x||=1} ||Ax||$ for $A \in \mathbb{R}^{n \times n}$, where $||\cdot|| : \mathbb{R}^n \to \mathbb{R}$ is the standard Euclidean norm. Prove:
 - (a) ||A|| is a norm
 - (b) $||aa^t|| = a^t a$
 - (c) $||A|| = \max\{x^t A x \mid ||x|| = 1\}$ if A is positive semidefinite
 - (d) $||A|| \leq ||A + B||$ if A and B are positiv semidefinite. (1+2+2+1 points)
- 4. Show that $|\det(A)| \leq \prod_{i=1}^{n} ||a_i||$ for an $n \times n$ -matrix A with columns a_1, \ldots, a_n (where $||\cdot|| : \mathbb{R}^n \to \mathbb{R}$ is again the standard Euclidean norm). (2 points)

Due date: Tuesday, May 24, 2022, before the lecture in the lecture hall.