Linear and Integer Optimization Assignment Sheet 6 Inofficial English Translation

1. Consider the following linear program:

Use $\{5, 6\}$ as an initial basis for the SIMPLEX ALGORITHM. As pivot rules, choose the new basis index α such that r_{α} maximized. Let the index β that leaves the basis be chosen such that it minimizes (among all candidates) the value $q_{\beta\alpha}$. Show that the SIMPLEX ALGORITHM does not terminate under these considitions. (5 points)

- 2. Consider a linear program in appropriate form for the SIMPLEX ALGORITHM, i.e. $\max\{c^t x \mid Ax = b, x \ge 0\}$ such that $A \in \mathbb{R}^{m \times n}$, $\operatorname{rank}(A) = m$ and Ax = b is feasible. Prove or disprove the following statements:
 - (a) A variable that has just entered the basis can leave the basis in the next iteration.
 - (b) A variable that has just left the basis can enter the basis in the next iteration.
 - (c) If x is unique optimum basic solution and \tilde{x} a second best basic solution with strictly smaller solution value then x can be computed from \tilde{x} by exchanging one basic variable.
 - (d) If no basic solution is degenerated and the LP is feasible and bounded then there is a unique optimum solution. (1+1+1+1 points)
- 3. Consider a linear program $\max\{c^t x \mid Ax = b, x \ge 0\}$. Let B be a feasible basis with basic solution x^* and reduced cost vector $r \le 0$ (so x^* is an optimum solution). Let $I = \{j \in N \mid r_j = 0\}$.
 - (a) Prove that x^* is the unique optimum solution if $I = \emptyset$.
 - (b) Assume that $I \neq \emptyset$. Prove that in this case x^* is the unique optimum solution if and only if the following linear program has the optimum solution value 0:

$$\max \sum_{i \in I} x_i$$

s.t. $Ax = b$
 $x_i = 0$ for $i \in N \setminus I$
 $x_i \ge 0$ for $i \in B \cup I$

(2+3 points)

- 4. Consider a linear program $\max\{c^t x \mid Ax = b, x \ge 0\}$ such that $A \in \mathbb{R}^{m \times n}$, $\operatorname{rank}(A) = m$ and Ax = b is feasible. Let B be a dual feasible basis, i.e. a basis such that $\tilde{y} = (A_B^t)^{-1} c_B$ is a feasible solution of the dual LP.
 - (a) Show that the entry z_0 of the simplex tableau T(B) is the cost of the dual solution.
 - (b) Let $\beta \in B$ with $p_{\beta} < 0$ and $\alpha \in N$ with $q_{\beta\alpha} > 0$ such that $\frac{r_{\alpha}}{q_{\beta\alpha}} \ge \frac{r_j}{q_{\betaj}}$ for all $j \in N$ with $q_{\beta j} > 0$. Prove that $(B \setminus \{\beta\}) \cup \{\alpha\}$ is a dual feasible basis. Moreover, show that the value of the dual solution is changed by $\frac{-p_{\beta}}{q_{\beta\alpha}}r_{\alpha}$. (2+4 points)

Due date: Thursday, May 19, 2022, before the lecture in the lecture hall.