Linear and Integer Optimization Assignment Sheet 6
 Inofficial English Translation

1. Consider the following linear program:

$$
\begin{aligned}
& \max 2.3 x_{1}+2.15 x_{2}-13.55 x_{3}-0.4 x_{4} \\
& \text { s.d. } 0.4 x_{1}+0.2 x_{2}-1.4 x_{3}-0.2 x_{4}+x_{5}=0 \\
& \begin{array}{rlrlllllll}
-7.8 x_{1} & - & 1.4 x_{2} & + & 7.8 x_{3} & + & 0.4 x_{4} & & x_{6} & =0 \\
x_{1} & , & x_{2} & , & x_{3} & , & x_{4}, & x_{5} & , & x_{6}
\end{array}
\end{aligned}
$$

Use $\{5,6\}$ as an initial basis for the Simplex Algorithm. As pivot rules, choose the new basis index α such that r_{α} maximized. Let the index β that leaves the basis be chosen such that it minimizes (among all candidates) the value $q_{\beta \alpha}$. Show that the Simplex Algorithm does not terminate under these considitions.
2. Consider a linear program in appropriate form for the Simplex Algorithm, i.e. $\max \left\{c^{t} x \mid A x=\right.$ $b, x \geq 0\}$ such that $A \in \mathbb{R}^{m \times n}, \operatorname{rank}(A)=m$ and $A x=b$ is feasible. Prove or disprove the following statements:
(a) A variable that has just entered the basis can leave the basis in the next iteration.
(b) A variable that has just left the basis can enter the basis in the next iteration.
(c) If x is unique optimum basic solution and \tilde{x} a second best basic solution with strictly smaller solution value then x can be computed from \tilde{x} by exchanging one basic variable.
(d) If no basic solution is degenerated and the LP is feasible and bounded then there is a unique optimum solution.
3. Consider a linear program $\max \left\{c^{t} x \mid A x=b, x \geq 0\right\}$. Let B be a feasible basis with basic solution x^{*} and reduced cost vector $r \leq 0$ (so x^{*} is an optimum solution). Let $I=\left\{j \in N \mid r_{j}=0\right\}$.
(a) Prove that x^{*} is the unique optimum solution if $I=\emptyset$.
(b) Assume that $I \neq \emptyset$. Prove that in this case x^{*} is the unique optimum solution if and only if the following linear program has the optimum solution value 0 :

$$
\begin{aligned}
\max \sum_{i \in I} x_{i} & \\
\text { s.t. } \quad A x & =b \\
x_{i} & =0 \quad \text { for } i \in N \backslash I \\
x_{i} & \geq 0 \quad \text { for } i \in B \cup I
\end{aligned}
$$

4. Consider a linear program $\max \left\{c^{t} x \mid A x=b, x \geq 0\right\}$ such that $A \in \mathbb{R}^{m \times n}$, $\operatorname{rank}(A)=m$ and $A x=b$ is feasible. Let B be a dual feasible basis, i.e. a basis such that $\tilde{y}=\left(A_{B}^{t}\right)^{-1} c_{B}$ is a feasible solution of the dual LP.
(a) Show that the entry z_{0} of the simplex tableau $T(B)$ is the cost of the dual solution.
(b) Let $\beta \in B$ with $p_{\beta}<0$ and $\alpha \in N$ with $q_{\beta \alpha}>0$ such that $\frac{r_{\alpha}}{q_{\beta \alpha}} \geq \frac{r_{j}}{q_{\beta j}}$ for all $j \in N$ with $q_{\beta j}>0$. Prove that $(B \backslash\{\beta\}) \cup\{\alpha\}$ is a dual feasible basis. Moreover, show that the value of the dual solution is changed by $\frac{-p_{\beta}}{q_{\beta \alpha}} r_{\alpha}$.
($2+4$ points)

Due date: Thursday, May 19, 2022, before the lecture in the lecture hall.

