Linear and Integer Optimization
 Assignment Sheet 4
 Inofficial English Translation

1. For a polytope $P=\left\{x \in \mathbb{R}^{n} \mid A x \leq b\right\} \neq \emptyset$ let $P^{\prime}:=\left\{(x, t) \in \mathbb{R}^{n} \times \mathbb{R} \mid A x \leq t b, 0 \leq t \leq 1\right\}$.
(a) Show that $P^{\prime}=\operatorname{conv}((P \times\{1\}) \cup\{0\})$.
(b) Prove that for each face F of P the set $\operatorname{conv}((F \times\{1\}) \cup\{0\})$ is a face of P^{\prime}.
(c) Do these these statements still necessarily hold if P is an unbounded polyhedron? $(2+2+1$ points $)$
2. For $n \in \mathbb{N} \backslash\{0\}$ and a subset $X \subseteq \mathbb{R}$ let

$$
M_{X}=\left\{A=\left(a_{i j}\right)_{\substack{i=1, \ldots, n \\ j=1, \ldots, n}} \mid a_{i_{0} j_{0}} \in X, \sum_{i=1}^{n} a_{i j_{0}}=1, \sum_{j=1}^{n} a_{i_{0} j}=1 \quad\left(\text { for } i_{0}, j_{0} \in\{1, \ldots, n\}\right)\right\} .
$$

Show that an $n \times n$-matrix A is in $M_{\mathbb{R}_{\geq 0}}$ if and only if it is a convex combination of matrices in $M_{\{0,1\}}$.
(4 points)
Hint: Induction in n.
3. Let $X \subseteq \mathbb{R}^{n}$ and $y \in \operatorname{conv}(X)$. Prove that there are vectors $x_{1}, \ldots, x_{k} \in X$ with $k \leq n+1$ and $y \in \operatorname{conv}\left(\left\{x_{1}, \ldots, x_{k}\right\}\right)$.
(4 points)
4. Let $P=\left\{x \in \mathbb{R}^{n} \mid A x \leq b\right\}$ be a polyhedron. Moreover, let $P^{*}:=\left\{y \in \mathbb{R}^{n} \mid y^{t} x \leq 1\right.$ for all $\left.x \in P\right\}$ and $P^{0}:=\left\{y \in \mathbb{R}^{n} \mid y^{t} x \leq 0\right.$ for all $\left.x \in P\right\}$.
(a) Show that P^{*} is a polyhedron.
(b) Prove that $\left(P^{*}\right)^{*}=P$ if and only if $b \geq 0$.
(c) In addition, assume $b=0$. Show that $P^{*}=P^{0}$ and prove that P^{0} is the convex cone generated by the rows of A.
($2+3+2$ points)

Due date: Thursday, May 5, 2022, before the lecture in the lecture hall.

