Linear and Integer Optimization
 Assignment Sheet 3
 Inofficial English Translation

1. For $A \in \mathbb{R}^{m \times n}, c \in \mathbb{R}^{n}$ and $b=\left(b_{1}, \ldots, b_{m}\right) \in \mathbb{R}^{m}$ let $x^{*} \in \mathbb{R}^{n}$ be an optimum solution of the LP $\max \left\{c^{t} x \mid A x \leq b\right\}$. Moreover, let $\tilde{b}=\left(\tilde{b}_{1}, \ldots, \tilde{b}_{m}\right) \in \mathbb{R}^{m}$, and let $\tilde{x} \in \mathbb{R}^{n}$ be a vector with $A \tilde{x} \leq \tilde{b}$. Prove that \tilde{x} is an optimum solution of the LP $\max \left\{c^{t} x \mid A x \leq \tilde{b}\right\}$ if $a_{i}^{t} \tilde{x}<\tilde{b}_{i}$ implies $a_{i}^{t} x^{*}<b_{i}$ for all $i \in\{1, \ldots, m\}$ (where a_{i}^{t} is the i-th row of A).
(5 points)
2. Consider the following primal-dual pair of linear programs: $\max \left\{c^{t} x \mid A x \leq b, x \geq 0\right\}$ and $\min \left\{b^{t} y \mid A^{t} y \geq c, y \geq 0\right\}$. Suppose that $\left\{x \in \mathbb{R}^{n} \mid A x \leq b, x \geq 0\right\}$ is a non-empty polytope. Show that there is a feasible dual solution y with $y>0$ and $A^{t} y>c$.
3. Let P be a polyhedron with $\operatorname{dim}(P)=d$ and F a face of P with $\operatorname{dim}(F)=k \in\{0, \ldots, d-1\}$. Show that there are faces $F_{k+1}, F_{k+2}, \ldots, F_{d-1}$ of P with
i) $F \subseteq F_{k+1} \subseteq F_{k+2} \subseteq \cdots \subseteq F_{d-1} \subseteq P$,
ii) $\operatorname{dim}\left(F_{k+i}\right)=k+i$ for $i \in\{1, \ldots, d-k-1\}$.
4. Prove or disprove the following statement: If $X, Y \subseteq \mathbb{R}^{n}$ are polyhedra, then $X+Y$ is a polyhedron.

Due date: Thursday, April 28, 2022, before the lecture in the lecture hall.

