Linear and Integer Optimization
 Assignment Sheet 1
 Inofficial English Translation

1. A paper mill produces paper rolls of 3 m width. The customers order rolls with smaller widths and the mill has to cut the ordered rolls out of the 3 m wide rolls. For example, a 3 m wide roll may be cut into two 93 cm wide and a 108 cm wide roll, leaving an offcut of 6 cm . The current order consists of

- 90 rolls of width 130 cm ,
- 610 rolls of width 108 cm ,
- 395 rolls of width 42 cm , and
- 211 rolls of width 93 cm .

Formulate an integer linear program that minimizes the number of produced 3 m rolls and allows a correct cutting of the ordered rolls.
2. Let two finite disjoint sets A and B of vectors in \mathbb{R}^{2} be given. We ask for a quadratic function $f(x)=a_{2} x^{2}+a_{1} x+a_{0}$, such that all points in A are below the curve $\{(x, y) \mid x \in \mathbb{R}, y=f(x)\}$ and all point in B are above that curve. Describe a linear program whose solution allows you to decide directly if such a polynomial exists and, if it exists, to compute one.
3. Show that the dimension of a non-empty set $X \subseteq \mathbb{R}^{n}$ is the largest d for which X contains elements $v_{0}, v_{1}, \ldots, v_{d}$ such that $v_{1}-v_{0}, v_{2}-v_{0}, \ldots, v_{d}-v_{0}$ are linearly independent.
4. (a) Prove that for each set $X \subseteq \mathbb{R}^{n}$ the set $\operatorname{conv}(X)$ is the smallest convex set containing X.
(b) Prove that any set $X \subseteq \mathbb{R}^{n}$ with $|X|>n+1$ can be decomposed into subsets X_{1} and X_{2} such that $\operatorname{conv}\left(X_{1}\right) \cap \operatorname{conv}\left(X_{2}\right) \neq \emptyset$.
($2+5$ points)

Due date: Thursday, April 14, 2022, before the lecture in the lecture hall.

