Exercise Set 10

Exercise 10.1. (a) Find, for every $m \in \mathbb{N}$, an instance of the Min-Max Resource Sharing Problem with m resources $(m=|\mathcal{R}|)$ such that

$$
\inf \left\{\max _{r \in \mathcal{R}} \sum_{C \in \mathcal{N}}\left(b_{C}\right)_{r}: b_{C} \in B_{C}\right\} \geq|\mathcal{R}| \lambda^{*}
$$

(b) Prove that for every instance of the Min-Max Resource Sharing Problem it holds

$$
\inf \left\{\max _{r \in \mathcal{R}} \sum_{C \in \mathcal{N}}\left(b_{C}\right)_{r}: b_{C} \in B_{C}\right\} \leq|\mathcal{R}| \lambda^{*}
$$

(5+5* points)

Exercise 10.2. In this exercise we use the notation from Section 5.3.5 from the lecture notes. Let $y \in \mathbb{R}_{\geq 0}^{\mathcal{R}}$ be a price vector. Prove that there is always an arrival time solution $a(v) \in\left\{a_{\min }(v), a_{\max }(v)\right\}$ that satisfies

$$
\sum_{r \in \mathcal{R}} u s g_{v, r}(a(v)) y_{r}=\min _{a \in\left[a_{\min }(v), a_{\max }(v)\right]} \sum_{r \in \mathcal{R}} u s g_{v, r}(a) y_{r} .
$$

Exercise 10.3. In this exercise we want to show that the randomized rounding for the Min-Max Resource Sharing Problem can be derandomized.
Let $\mathcal{N}=\{1, \ldots,|\mathcal{N}|\}$ and let $\mathcal{B}_{i} \subseteq \mathbb{R}^{\mathcal{R}}(i \in \mathcal{N})$ be finite sets. Let $\left(x_{i, b}\right)_{i \in \mathcal{N}, b \in \mathcal{B}_{i}}$ be a fractional solution of the Min-Max Resource Sharing Problem with $\sum_{b \in \mathcal{B}_{i}} x_{i, b}=1$ for all $i \in \mathcal{N}$.
Consider a randomized rounding $\left(\hat{z}_{i}\right)_{i \in \mathcal{N}}$ that arises from choosing $\hat{z}_{i}=b$ with probability $x_{i, b}$ independently for each $i \in \mathcal{N}$. We write

- $\lambda:=\max _{r \in \mathcal{R}} \sum_{i=1}^{|\mathcal{N}|} \sum_{b \in B_{i}} x_{i, b} b_{r}$ and $\hat{\lambda}:=\max _{r \in \mathcal{R}} \sum_{i=1}^{|\mathcal{N}|}\left(\hat{z}_{i}\right)_{r}$.
- For $\delta>0$ and $z_{1} \in \mathcal{B}_{1}, \ldots, z_{l} \in \mathcal{B}_{l}$ let $\operatorname{Pr}\left(\hat{\lambda}>(1+\delta) \lambda \mid z_{1}, \ldots, z_{l}\right)$ denote the probability that $\hat{\lambda}>(1+\delta) \lambda$ under the condition $\hat{z}_{1}=z_{1}, \ldots, \hat{z}_{l}=z_{l}$.
- $\rho_{r}:=\max \left\{b_{r} \mid i \in \mathcal{N}, b \in \mathcal{B}_{i}, r \in \mathcal{R}\right\}$

We will use the following algorithm, known as Method of conditional probabilities, to round x.

```
for \(i=1, \ldots,|\mathcal{N}|\) do
    Set \(\hat{z}_{i}:=b\) where \(b \in \mathcal{B}_{i}\) minimizes \(\operatorname{Pr}\left(\hat{\lambda}>(1+\delta) \lambda \mid \hat{z}_{1}, \ldots, \hat{z}_{i-1}, b\right)\)
end for
```

(a) If $\operatorname{Pr}(\hat{\lambda}>(1+\delta) \lambda)<1$, show that the method of conditional probabilities returns a rounding \hat{z} satisfying $\hat{\lambda} \leq(1+\delta) \lambda$.
(b) Let $F_{\delta}\left(z_{1}, \ldots, z_{l}\right):=$
$\sum_{r \in \mathcal{R}} \prod_{i=1, \ldots, l}\left((1+\delta)^{\left(z_{i}\right)_{r} / \rho_{r}}\right) \prod_{i=l+1}^{|\mathcal{N}|}\left(\sum_{b \in \mathcal{B}_{i}} x_{i, b}(1+\delta)^{b_{r} / \rho_{r}}\right)(1+\delta)^{-(1+\delta) \lambda / \rho_{r}}$
Show that $F_{\delta}\left(z_{1}, \ldots, z_{l}\right)$ is a pessimistic estimator for $\operatorname{Pr}\left(\hat{\lambda}>(1+\delta) \lambda \mid z_{1}, \ldots, z_{l}\right)$, i.e. show that the following two statements hold:

- $\operatorname{Pr}\left(\hat{\lambda}>(1+\delta) \lambda \mid z_{1}, \ldots, z_{l}\right) \leq F_{\delta}\left(z_{1}, \ldots, z_{l}\right)$
- $\min _{b \in \mathcal{B}_{i}} F_{\delta}\left(z_{1}, \ldots, z_{i-1}, b\right) \leq F_{\delta}\left(z_{1}, \ldots, z_{i-1}\right)$
(c) Assume that

$$
1-\sum_{r \in \mathcal{R}} e^{-((1+\delta) \ln (1+\delta)-\delta) \lambda / \rho_{r}}>0
$$

Show that $F_{\delta}<1$ and that the method of conditional probabilities returns a solution \hat{z} satisfying $\hat{\lambda} \leq(1+\delta) \lambda$ when minimizing $F_{\delta}\left(\hat{z}_{1}, \ldots, \hat{z}_{l}, b\right)$ instead of $\operatorname{Pr}\left(\hat{\lambda}>(1+\delta) \lambda \mid \hat{z}_{1}, \ldots, \hat{z}_{l}, b\right)$.

Deadline: June 30, before the lecture. The websites for lecture and exercises can be found at:
http://www.or.uni-bonn.de/lectures/ss22/chipss22_ex.html
In case of any questions feel free to contact me at blankenburg@or.unibonn.de.

