Exercise Set 10

Exercise 10.1. (a) Find, for every $m \in \mathbb{N}$, an instance of the Min-Max Resource Sharing Problem with m resources $(m = |\mathcal{R}|)$ such that

$$\inf\left\{\max_{r\in\mathcal{R}}\sum_{C\in\mathcal{N}}(b_C)_r:b_C\in B_C\right\}\geq |\mathcal{R}|\lambda^*.$$

(b) Prove that for every instance of the Min-Max Resource Sharing Problem it holds

$$\inf\left\{\max_{r\in\mathcal{R}}\sum_{C\in\mathcal{N}}(b_C)_r:b_C\in B_C\right\}\leq |\mathcal{R}|\lambda^*.$$
(5+5* points)

Exercise 10.2. In this exercise we use the notation from Section 5.3.5 from the lecture notes. Let $y \in \mathbb{R}_{\geq 0}^{\mathcal{R}}$ be a price vector. Prove that there is always an arrival time solution $a(v) \in \{a_{min}(v), a_{max}(v)\}$ that satisfies

$$\sum_{r \in \mathcal{R}} usg_{v,r}(a(v))y_r = \min_{a \in [a_{min}(v), a_{max}(v)]} \sum_{r \in \mathcal{R}} usg_{v,r}(a)y_r.$$
(5 points)

Exercise 10.3. In this exercise we want to show that the randomized rounding for the MIN-MAX RESOURCE SHARING PROBLEM can be derandomized.

Let $\mathcal{N} = \{1, ..., |\mathcal{N}|\}$ and let $\mathcal{B}_i \subseteq \mathbb{R}^{\mathcal{R}}$ $(i \in \mathcal{N})$ be finite sets. Let $(x_{i,b})_{i \in \mathcal{N}, b \in \mathcal{B}_i}$ be a fractional solution of the MIN-MAX RESOURCE SHARING PROBLEM with $\sum_{b \in \mathcal{B}_i} x_{i,b} = 1$ for all $i \in \mathcal{N}$.

Consider a randomized rounding $(\hat{z}_i)_{i \in \mathcal{N}}$ that arises from choosing $\hat{z}_i = b$ with probability $x_{i,b}$ independently for each $i \in \mathcal{N}$. We write

- $\lambda := \max_{r \in \mathcal{R}} \sum_{i=1}^{|\mathcal{N}|} \sum_{b \in B_i} x_{i,b} b_r$ and $\hat{\lambda} := \max_{r \in \mathcal{R}} \sum_{i=1}^{|\mathcal{N}|} (\hat{z}_i)_r$.
- For $\delta > 0$ and $z_1 \in \mathcal{B}_1, ..., z_l \in \mathcal{B}_l$ let $\Pr(\hat{\lambda} > (1+\delta)\lambda | z_1, ..., z_l)$ denote the probability that $\hat{\lambda} > (1+\delta)\lambda$ under the condition $\hat{z}_1 = z_1, ..., \hat{z}_l = z_l$.

• $\rho_r \coloneqq \max\{b_r | i \in \mathcal{N}, b \in \mathcal{B}_i, r \in \mathcal{R}\}$

We will use the following algorithm, known as METHOD OF CONDITIONAL PROBABILITIES, to round x.

1: for $i = 1, ..., |\mathcal{N}|$ do 2: Set $\hat{z}_i \coloneqq b$ where $b \in \mathcal{B}_i$ minimizes $\Pr(\hat{\lambda} > (1 + \delta)\lambda | \hat{z}_1, ..., \hat{z}_{i-1}, b)$ 3: end for

- (a) If $\Pr(\hat{\lambda} > (1+\delta)\lambda) < 1$, show that the method of conditional probabilities returns a rounding \hat{z} satisfying $\hat{\lambda} \leq (1+\delta)\lambda$.
- (b) Let $F_{\delta}(z_1, ..., z_l) \coloneqq$ $\sum_{r \in \mathcal{R}} \prod_{i=1,...,l} ((1+\delta)^{(z_i)_r/\rho_r}) \prod_{i=l+1}^{|\mathcal{N}|} (\sum_{b \in \mathcal{B}_i} x_{i,b} (1+\delta)^{b_r/\rho_r}) (1+\delta)^{-(1+\delta)\lambda/\rho_r}$

Show that $F_{\delta}(z_1, ..., z_l)$ is a pessimistic estimator for $\Pr(\hat{\lambda} > (1 + \delta)\lambda | z_1, ..., z_l)$, i.e. show that the following two statements hold:

- $\operatorname{Pr}(\hat{\lambda} > (1+\delta)\lambda | z_1, ..., z_l) \leq F_{\delta}(z_1, ..., z_l)$
- $\min_{b \in \mathcal{B}_i} F_{\delta}(z_1, ..., z_{i-1}, b) \le F_{\delta}(z_1, ..., z_{i-1})$
- (c) Assume that

$$1 - \sum_{r \in \mathcal{R}} e^{-((1+\delta)\ln(1+\delta) - \delta)\lambda/\rho_r} > 0$$

Show that $F_{\delta} < 1$ and that the method of conditional probabilities returns a solution \hat{z} satisfying $\hat{\lambda} \leq (1+\delta)\lambda$ when minimizing $F_{\delta}(\hat{z}_1, ..., \hat{z}_l, b)$ instead of $\Pr(\hat{\lambda} > (1+\delta)\lambda | \hat{z}_1, ..., \hat{z}_l, b)$.

(4+3+3 points)

Deadline: June 30, before the lecture. The websites for lecture and exercises can be found at:

http://www.or.uni-bonn.de/lectures/ss22/chipss22_ex.html

In case of any questions feel free to contact me at blankenburg@or.unibonn.de.