Exercise Set 4

Exercise 4.1. For a finite set $\emptyset \neq T \subsetneq \mathbb{R}^{2}$ we define

$$
\mathrm{BB}(T):=\max _{(x, y) \in T} x-\min _{(x, y) \in T} x+\max _{(x, y) \in T} y-\min _{(x, y) \in T} y .
$$

A Steiner tree for T is a tree Y with $T \subseteq V(Y) \subsetneq \mathbb{R}^{2}$. We denote by $\operatorname{Steiner}(T)$ the length of a shortest rectilinear (i.e. edge lengths acc. to ℓ_{1}) Steiner tree for T. Moreover let $\operatorname{MST}(T)$ be the length of a minimum spanning tree in the complete graph on T with edge costs ℓ_{1}.

Prove that:
(a) $\mathrm{BB}(T) \leq \operatorname{Steiner}(T) \leq \operatorname{MST}(T)$;
(b) $\operatorname{Steiner}(T) \leq \frac{3}{2} \mathrm{BB}(T)$ for $|T| \leq 5$;
(c) There is no $\alpha \in \mathbb{R}$ s.t. $\operatorname{Steiner}(T) \leq \alpha \mathrm{BB}(T)$ for all finite $\emptyset \neq T \subset \mathbb{R}^{2}$.

$$
(2+3+2 \text { points })
$$

Exercise 4.2. Let (M, d) be a metric space. For $n \in \mathbb{N}_{\geq 2}$ we define the Steiner ratios

$$
\operatorname{SR}(M, n):=\sup _{P=\left\{p_{1}, \ldots, p_{n}\right\} \subseteq M} \frac{\operatorname{MST}(P)}{\operatorname{STE} \operatorname{INER}(P)}
$$

where $\operatorname{STEINER}(P)$ denotes the length of a minimum Steiner tree connecting all points in P and MST (P) denotes the size of a minimum spanning tree connecting all points in P.
(a) Let $(M, d)=\left(\mathbb{R}^{2}, d\right)$ with $d(x, y):=\|x-y\|_{2}$. Show that there is a $n \in \mathbb{N}_{\geq 2}$, such that $\operatorname{SR}(M, n) \geq 2 / \sqrt{3}$.
(b) Let (M, d) be an arbitrary metric space and let $n \in \mathbb{N}_{\geq 2}$. Show that $\operatorname{SR}(M, n) \leq 2(1-1 / n)$.

$$
(2+3 \text { points })
$$

Exercise 4.3. Let (G, c, T) be an instance of the Steiner Tree Problem, G connected, $t \in T$ a terminal and $k \in \mathbb{N}$ with $k \geq 1$.
For each of the following functions $V(G) \times 2^{T} \rightarrow \mathbb{R}_{\geq 0}$ decide whether it defines a valid lower bound for instances of the Rectilinear Steiner Tree Problem and prove your statement.
(a) For two valid lower bounds lb_{a} and lb_{b}, define $\max \left(\mathrm{lb}_{a}, \mathrm{lb}_{b}\right)$ by

$$
\max \left(\mathrm{lb}_{a}, \mathrm{lb}_{b}\right)(v, I):=\max \left(\mathrm{lb}_{a}(v, I), \mathrm{lb}_{b}(v, I)\right)
$$

(b) Define $\operatorname{lb}_{\mathrm{BB}}(v, I):=\mathrm{BB}(\{v\} \cup I)$.
(c) Define $\mathrm{lb}_{\mathrm{mst}}(v, I):=\frac{\operatorname{mst}(\{v\} \cup I)}{2}$. Here $\operatorname{mst}(\{v\} \cup I)$ denotes the cost of a minimal spanning tree in $G^{\prime}[\{v\} \cup I]$, where G^{\prime} is the metric closure of G.
(d) Define $\mathrm{lb}_{k}(v, I):=\max \{\operatorname{smt}(J)|t \in J \subseteq I \cup\{v\},|J| \leq k+1\}$ if $t \in I$ and $\mathrm{lb}_{k}(v, I):=0$ otherwise.

$$
(2+1+2+3 \text { points })
$$

Deadline: May 5, before the lecture. The websites for lecture and exercises can be found at:
http://www.or.uni-bonn.de/lectures/ss22/chipss22_ex.html
In case of any questions feel free to contact me at blankenburg@or.unibonn.de.

