
Chip Design
Summer Term 2022

Prof. Dr. Stephan Held
Daniel Blankenburg, M. Sc.

Programming Exercise 2

Exercise P.1. Let G = (V,E) be an undirected graph and k = |V |. Let
C ⊆ V and f : V \ C → {1, . . . , k} be a placement function (in particular f
is injective).

(a) Compute positions g : V → [1, k], extending f , approx. minimizing∑
e={v,w}∈E

|g(v)− g(w)|2

This can be achieved by choosing any initial positions and then itera-
tively picking the average position of all neighbors for each circuit (this
is equivalent to perform Gauß-Seidel iterations on the linear equation
system defined in Proposition 4.18 in the lecture). Stop if the maxi-
mum circuit movement in one iteration is below 0.1. Note that g is not
required to be injective.

(b) Compute positions g : V → {1, . . . , k}, extending f , minimizing∑
e={v,w}∈E

|g(v)− g(w)|

Again g is not required to be injective. One way to solve this prob-
lem approximately is to use subgradient descent. The subgradient of a
convex function h : Rn → R is defined as the set

∂h(x) := {v ∈ Rn : h(y) ≥ h(x) + 〈v, y − x〉 ∀y ∈ Rn}.

If h(x) is differentiable in x then ∂h(x) = {∇h(x)}. Note that for
vi ∈ ∂hi(x) it holds that ∑m

i=1 vi ∈ ∂
∑m

i=1 hi(x). Subgradient descent
works in the following way:

• Let x(0) ∈ Rn.
• for i = 1, ..., K:

– Let v(i) ∈ ∂h(x(i−1)).
– x(i) := x(i−i) − αiv

(i)

• return x∗ ∈ {x(1), ..., x(K)} with minimum h-value.

Chip Design
Summer Term 2022

Prof. Dr. Stephan Held
Daniel Blankenburg, M. Sc.

Here αi ∈ R>0 should be a step-size rule that satisfies ∑∞
i=1 αi = ∞,∑∞

i=1 α
2
i <∞, e.g. αi = 1/i.

To apply subgradient descent to this exercise you can define h : RV →
R, h(x) := ∑

{v,w}∈E(G) |xv − xw|. In order to satisfy the constraints on
the x variables you should leave xv := f(v) for v ∈ V \ C fixed and
project xv into [1, k] after every iteration for v ∈ C.
Alternatively (to get bonus points), you can use an open-source LP
solver of your choice to solve the problem exactly. This can be for
example the academically free program QSopt through the API in
lp.h that is available on the website or the free LP solver from the
Google OR-tools. For QSopt there is also an example program ex-
plaining the usage of that API, on which you can build upon. Read
the README file for further information! The program compiles un-
der Linux and under Windows/Cygwin (http://www.or.uni-bonn.
de/lectures/ss22/cd_ex/lp_solver.tar.gz). For compiling type
’make’ in the extracted directory ’mss’. If you encounter problems
building mss, do not hesitate to contact me.

(c) Finally extend the placement f to a placement f : V → {1, . . . , k}.
First use the program from the first, then from the second task ob-
taining some g which is not necessarily injective and integral. Sort the
circuits by their position w.r.t. g, pick the median unassigned circuit
and assign it to the median available position in f . Assign all the other
circuits to either the left or the right side depending on their posi-
tions w.r.t. g and recursively solve these two smaller instances, finally
yielding a placement f that is integral and distinct.

Run your programs on the instances on the website. For each of the tasks
output the linear length and the sum of the quadratic lengths. Moreover
print the positions g of the circuits C for the first two tasks and the positions
f for all vertices for the third task, by printing a single line for each circuit
containing its index in the input and its computed position.

The instances are given in DIMACS format:

• The first line starts with a p (problem) and has the following format:
p edge k m
where k = number of vertices (1, . . . , k) andm = number of edges (1, . . . ,m).

• Lines starting with an e define edges and have the following format:

http://www.or.uni-bonn.de/lectures/ss22/cd_ex/lp_solver.tar.gz
http://www.or.uni-bonn.de/lectures/ss22/cd_ex/lp_solver.tar.gz

Chip Design
Summer Term 2022

Prof. Dr. Stephan Held
Daniel Blankenburg, M. Sc.

e i j
where the edge is joining the vertices indexed by i and j.

• Lines starting with an n define vertex-positions and have the following
format:
n i p

where i is the vertex index and the integer p ∈ {1, . . . , k} is its posi-
tion. Vertices without fixed position, for which you should compute a
position, will have p = −1.

There is a C-routine for reading in a graph in the given format provided on
the website.

The program must be written in C or C++ and must compile and run on
Linux. You are allowed to use any any ISO C or C++ standard including
C++20. You can use any tool available in the standard library. Your program
must compile with either Clang (any version ≥ 3.4.2) or Gcc (version ≥ 4.8.3)
with -Wall -Wextra -Wpedantic -Werror and cannot link to any external
library except the standard library. To achieve the maximum score, your
program must not leak any memory and must be well documented.

(12+12+12 points)

Deadline: June 14, via email to blankenburg@or.uni-bonn.de. The web-
sites for the lecture with all exercises and test instances can be found at:

http://www.or.uni-bonn.de/lectures/ss22/chipss22_ex.html

mailto:blankenburg@or.uni-bonn.de
http://www.or.uni-bonn.de/lectures/ss22/chipss22_ex.html

