Exercise Set 12

Exercise 12.1. Describe a polynomial-time algorithm which optimally solves any instance of the Traveling Salesman Problem that is the metric closure of a weighted tree.

Exercise 12.2. Let c_{0} be the value of an optimal solution of an instance of the Metric TSP and c_{1} the cost of a second-shortest tour (note that this tour might have the same cost as the first one). Show that

$$
\frac{c_{1}-c_{0}}{c_{0}} \leq \frac{2}{n}
$$

Exercise 12.3. Consider the following algorithm for the Symmetric Traveling Salesman Problem with triangle inequality:
Start with an arbitrary vertex $u \in V\left(K_{n}\right)$. Find a shortest edge $e=\{u, v\} \in$ $E\left(K_{n}\right)$ connecting u to another vertex v. This yields a subtour $T=(u, v, u)$. Let $U:=V\left(K_{n}\right) \backslash\{u, v\}$. Repeat the following steps until $U=\emptyset$:
(i) Find $w \in U$ with shortest distance to one of the nodes in T.
(ii) Add w to T between two neighbouring nodes $i, j \in T$ (by deleting the edge $\{i, j\}$ and connecting i and j with w), such that the cost of the new tour is minimized, i.e. find neighbouring $i, j \in T$ such that $c(i, w)+c(w, j)-c(i, j)$ is minimum. Remove w from U afterwards.

Show that this is a 2-approximation.

Exercise 12.4. Show that the following problem is NP-complete: Given a graph G and a Hamiltonian cycle C in G, is there a Hamiltonian cycle $C^{\prime} \neq C$?
(4 points)

Deadline: Tuesday, July $5^{\text {th }}$, until 2:15 PM (before the lecture) via eCampus. ${ }^{\mathrm{E}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$-submissions are highly encouraged, however, you can also submit a scan (e.g. obtained with a mobile phone). Solutions may be submitted in groups of up to 2 people.

The websites for lecture and exercises can be found at:

```
http://www.or.uni-bonn.de/lectures/ss22/appr_ss22_ex.html
```

In case of any questions feel free to contact me at puhlmann@or.uni-bonn.de.

