Exercise Set 10

Exercise 10.1. Recall the LP k-DCR from Exercise 9.4. Consider the LP n-DCR where we allow directed full components of arbitrary size. Denote this LP by DCR. DCR has an exponential number of variables and constraints.

Show that, nevertheless, for any fixed $\epsilon > 0$, we can compute a $(1+\epsilon)$ -approximate solution to DCR in polynomial time.

Hint: Solve k-DCR for a convenient choice of k.

(6 points)

Exercise 10.2. Recall the LPs DCR from Exercise 10.1 and BCR from Exercise 9.1. Denote by OPT_{DCR} respectively OPT_{BCR} the value of an optimum solution to DCR resp. BCR for a given input instance. Show:

- (a) $OPT_{DCR} \ge OPT_{BCR}$ and
- (b) there are examples where $OPT_{DCR} > OPT_{BCR}$.

(2+2 points)

Exercise 10.3. Consider an instance G = (V, E) of the STEINER TREE PROBLEM with terminal set R and edge length $c : E \to \mathbb{R}_+$. Denote the full components of an optimum k-Steiner tree $\mathrm{SMT}_k(R)$ with T_1^*, \ldots, T_l^* .

(i) Suppose that $V \setminus R$ forms a stable set. Show that

 $\operatorname{mst}(R) \leq 2 \cdot (\operatorname{smt}_k(R) - \operatorname{loss}(T_1^*, \dots, T_l^*)).$

(ii) Suppose that all shortest paths between any two vertices in G have length 1 or 2. Show that

$$\operatorname{mst}(R) \leq 2 \cdot (\operatorname{smt}_k(R) - \operatorname{loss}(T_1^*, \dots, T_l^*)).$$

(iii) Show that the Loss Contraction Algorithm achieves an approximation ratio of $1.279 \cdot r_k$ in both cases.

(2+2+2 points)

Deadline: June 21st, until 2:15 PM (before the lecture) via eCampus. LAT_{EX} -submissions are highly encouraged, however, you can also submit a scan (e.g. obtained with a mobile phone). Solutions may be submitted in groups of up to 2 people.

The websites for lecture and exercises can be found at:

```
http://www.or.uni-bonn.de/lectures/ss22/appr_ss22_ex.html
```

In case of any questions feel free to contact me at puhlmann@or.uni-bonn.de.