Exercise Set 10

Exercise 10.1. Let (G, H) be a pair of undirected graphs on V(G) = V(H) with capacities $u : E(G) \to \mathbb{R}_+$ and demands $b : E(H) \to \mathbb{R}_+$. A concurrent flow of value $\alpha > 0$ is a family $(x^f)_{f \in E(H)}$ where x^f is an s-t-flow of value $\alpha \cdot b(f)$ in $(V(G), \{(v, w), (w, v) \mid \{v, w\} \in E(G)\})$ for each $f = \{t, s\} \in E(H)$, and

$$\sum_{f \in E(H)} x^f ((v, w)) + x^f ((w, v)) \le u(e)$$

for all $e = \{v, w\} \in E(G)$. The MAXIMUM CONCURRENT FLOW PROBLEM is to find a concurrent flow with maximum value $\alpha > 0$.

Prove that the MAXIMUM CONCURRENT FLOW PROBLEM is a special case of the MIN-MAX RESOURCE SHARING PROBLEM. Specify how to implement block solvers.

(5 points)

Exercise 10.2. Show that the VERTEX-DISJOINT PATHS PROBLEM is NPcomplete even if G is a subgraph of a track graph G_T with two routing planes. Recall that in this case G_T is a graph $G_T = (V, E)$ for some $n_x, n_y \in \mathbb{N}$ with $V = \{1, \ldots, n_x\} \times \{1, \ldots, n_y\} \times \{1, 2\}$ and $E = \{\{(x, y, z), (x', y', z')\} : |x - x'|z + |y - y'|(3 - z) + |z - z'| = 1\}.$

Hint: Consider the proof of Theorem 5.2.

(5 points)

Exercise 10.3. A posynomial function $f : \mathbb{R}^n_{>0} \to \mathbb{R}$ is of the form

$$f(x) = \sum_{k=1}^{K} c_k \prod_{i=1}^{n} x_i^{a_{ik}}$$

for $K \in \mathbb{N}, c_k > 0$ and $a_{ik} \in \mathbb{R}$.

- (a) Give an example for a non-convex posynomial function.
- (b) Let f be a posynomial function with lower and upper bounds $l, u \in \mathbb{R}^n_{>0}$, $l \leq u$ on the variables. Show that each local minimum of f on the box [l, u] is also a global minimum of f on [l, u].

Hint: Use a logarithmic variable transformation to derive an equivalent convex problem.

(2+3 points)

Exercise 10.4. Consider a chain of $n \in \mathbb{N}$ continuously sizable inverters with sizes $x_i > 0$ $(1 \le i \le n)$ depicted in Figure 10.1. Assume that the delay

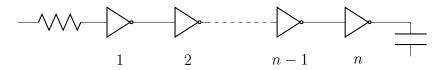


Figure 10.1: Chain of inverters.

 θ_i through inverter *i* is given by

$$\theta_i(x) = \alpha + \frac{\beta \cdot x_{i+1}}{x_i} \quad \text{for } 1 \le i < n-1$$

where $x = (x_1, \ldots, x_n), \alpha \ge 0, \beta > 0$. Wire delays, slews and transitions are ignored.

Derive a closed formula for the size x_i of the *i*-th inverter in a solution x of the total delay minimization problem for fixed x_1, x_n :

$$\min\left\{\sum_{i=1}^{n-1}\theta_i(x): x_i > 0 \text{ for all } 2 \le i \le n-1\right\}.$$
(5 points)

Deadline: July 2^{nd} , before the lecture. The websites for lecture and exercises can be found at:

In case of any questions feel free to contact me at ahrens@dm.uni-bonn.de.