Exercise Set 10

Exercise 10.1. Let (G, H) be a pair of undirected graphs on $V(G)=V(H)$ with capacities $u: E(G) \rightarrow \mathbb{R}_{+}$and demands $b: E(H) \rightarrow \mathbb{R}_{+}$. A concurrent flow of value $\alpha>0$ is a family $\left(x^{f}\right)_{f \in E(H)}$ where x^{f} is an s - t-flow of value $\alpha \cdot b(f)$ in $(V(G),\{(v, w),(w, v) \mid\{v, w\} \in E(G)\})$ for each $f=\{t, s\} \in$ $E(H)$, and

$$
\sum_{f \in E(H)} x^{f}((v, w))+x^{f}((w, v)) \leq u(e)
$$

for all $e=\{v, w\} \in E(G)$. The Maximum Concurrent Flow Problem is to find a concurrent flow with maximum value $\alpha>0$.

Prove that the Maximum Concurrent Flow Problem is a special case of the Min-Max Resource Sharing Problem. Specify how to implement block solvers.

Exercise 10.2. Show that the Vertex-Disjoint Paths Problem is NPcomplete even if G is a subgraph of a track graph G_{T} with two routing planes. Recall that in this case G_{T} is a graph $G_{T}=(V, E)$ for some $n_{x}, n_{y} \in \mathbb{N}$ with $V=\left\{1, \ldots, n_{x}\right\} \times\left\{1, \ldots, n_{y}\right\} \times\{1,2\}$ and $E=\left\{\left\{(x, y, z),\left(x^{\prime}, y^{\prime}, z^{\prime}\right)\right\}\right.$: $\left.\left|x-x^{\prime}\right| z+\left|y-y^{\prime}\right|(3-z)+\left|z-z^{\prime}\right|=1\right\}$.

Hint: Consider the proof of Theorem 5.2.

Exercise 10.3. A posynomial function $f: \mathbb{R}_{>0}^{n} \rightarrow \mathbb{R}$ is of the form

$$
f(x)=\sum_{k=1}^{K} c_{k} \prod_{i=1}^{n} x_{i}^{a_{i k}}
$$

for $K \in \mathbb{N}, c_{k}>0$ and $a_{i k} \in \mathbb{R}$.
(a) Give an example for a non-convex posynomial function.
(b) Let f be a posynomial function with lower and upper bounds $l, u \in \mathbb{R}_{>0}^{n}$, $l \leq u$ on the variables. Show that each local minimum of f on the box $[l, u]$ is also a global minimum of f on $[l, u]$.

Hint: Use a logarithmic variable transformation to derive an equivalent convex problem.

$$
(2+3 \text { points })
$$

Exercise 10.4. Consider a chain of $n \in \mathbb{N}$ continuously sizable inverters with sizes $x_{i}>0(1 \leq i \leq n)$ depicted in Figure 10.1. Assume that the delay

Figure 10.1: Chain of inverters.
θ_{i} through inverter i is given by

$$
\theta_{i}(x)=\alpha+\frac{\beta \cdot x_{i+1}}{x_{i}} \quad \text { for } 1 \leq i<n-1
$$

where $x=\left(x_{1}, \ldots, x_{n}\right), \alpha \geq 0, \beta>0$. Wire delays, slews and transitions are ignored.

Derive a closed formula for the size x_{i} of the i-th inverter in a solution x of the total delay minimization problem for fixed x_{1}, x_{n} :

$$
\min \left\{\sum_{i=1}^{n-1} \theta_{i}(x): x_{i}>0 \text { for all } 2 \leq i \leq n-1\right\} .
$$

Deadline: July 2 ${ }^{\text {nd }}$, before the lecture. The websites for lecture and exercises can be found at:
http://www.or.uni-bonn.de/lectures/ss20/chipss20_ex.html
In case of any questions feel free to contact me at ahrens@dm.uni-bonn.de.

