Exercise Set 9

Exercise 9.1. Consider the following algorithm to compute a rectilinear Steiner tree T for a set P of points in the plane \mathbb{R}^2 .

1: Choose $p \in P$ arbitrarily; 2: $T := (\{p\}, \emptyset), S := P \setminus \{p\}$ 3: while $S \neq \emptyset$ do 4: Choose $s \in S$ with minimum dist(s, T)if $E(T) = \emptyset$ then 5: $T := (\{p, s\}, \{\{s, p\}\})$ 6: 7: else 8: Let $\{u, w\} \in E(T)$ be an edge which minimizes dist(s, SP(u, w))9: $v := \arg\min\{dist(s, v) \mid v \in SP(u, w)\}$ $T := (V(T) \cup \{v\} \cup \{s\}, E(T) \setminus \{\{u, w\}\} \cup \{\{u, v\}, \{v, w\}, \{v, s\}\})$ 10:end if 11: $S := S \setminus \{s\}$ 12:13: end while

In this notation $SP(u, w) \subset \mathbb{R}^2$ is the area covered by shortest paths between u and w, and dist(s, T) is the minimum distance between s and the shortest path area SP(u, w) of an edge $\{u, w\} \in E(T)$.

Show that the algorithm is a $\frac{3}{2}$ -approximation algorithm for the MINIMUM STEINER TREE PROBLEM.

(5 points)

Exercise 9.2. Let $T \subset \mathbb{R}^2$ be a finite set of terminals, and $S_1, \ldots, S_m \subseteq \mathbb{R}^2$ be rectangular, axis-parallel blockages. Let $S := \bigcup_i S_i$, \mathring{S} denote the interior of S, and let $0 < L \in \mathbb{R}$ be a constant.

A rectilinear Steiner tree Y for T is *reach-aware* if every connected component of $E(Y) \cap \mathring{S}$ has length at most L.

(a) We define the Hanan grid induced by (T, S_1, \ldots, S_m) as the usual Hanan grid for $T \cup \{l_i, u_i \mid 1 \leq i \leq m\}$ where l_i (resp. u_i) is the lower left (resp. upper right) corner of S_i .

Prove or disprove: If there is a reach-aware Steiner tree there is always a shortest reach-aware Steiner tree for T that is a subgraph of the Hanan grid induced by (T, S_1, \ldots, S_m) .

(b) Prove that it is \mathcal{NP} -hard to compute a reach-aware Steiner tree for T that has at most twice the length of an optimum solution, even with the assumption that all terminals $t \in T$ have distance at most L to unblocked area.

Hint: If there are no terminals on blockages this is not \mathcal{NP} -hard.

(5 points)

Exercise 9.3. Formulate the SIMPLE GLOBAL ROUTING PROBLEM as an integer linear program with a polynomial number of variables and constraints.

(5 points)

Exercise 9.4. Consider the ESCAPE ROUTING PROBLEM: We are given a complete 2-dimensional grid graph G = (V, E) (i.e. $V = \{0, \ldots, k-1\} \times \{0, \ldots, k-1\}$ and $E = \{\{v, w\} \mid v, w \in V, ||v - w|| = 1\}$) and a set $P = \{p_1, \ldots, p_m\} \subseteq V$. The task is to compute vertex-disjoint paths $\{q_1, \ldots, q_m\}$ s.t. each q_i connects p_i with a point on the border $B = \{(x, y) \in V \mid \{x, y\} \cap \{0, k-1\} \neq \emptyset\}$.

Find a polynomial-time algorithm for the ESCAPE ROUTING PROBLEM or prove that the problem is NP-hard.

(5 points)

Deadline: June 25^{th} , before the lecture. The websites for lecture and exercises can be found at:

```
http://www.or.uni-bonn.de/lectures/ss20/chipss20_ex.html
```

In case of any questions feel free to contact me at ahrens@dm.uni-bonn.de.