Exercise Set 7

Exercise 7.1. Let (G, c, T) be an instance of the Steiner Tree Problem, G connected, $t \in T$ a terminal and $k \in \mathbb{N}$ with $k \geq 1$.
(a) For two valid lower bounds lb_{a} and lb_{b}, define $\max \left(\mathrm{lb}_{a}, \mathrm{lb}_{b}\right)$ by

$$
\max \left(\mathrm{lb}_{a}, \mathrm{lb}_{b}\right)(v, I):=\max \left(\mathrm{lb}_{a}(v, I), \mathrm{lb}_{b}(v, I)\right)
$$

Show that $\max \left(\mathrm{lb}_{a}, \mathrm{lb}_{b}\right)$ also defines a valid lower bound.
(b) Prove that $\mathrm{lb}_{\mathrm{BB}}(v, I):=\mathrm{BB}(\{v\} \cup I)$ is a valid lower bound for instances of the Rectilinear Steiner Tree Problem.
(c) Show that $\mathrm{lb}_{\text {mst }}(v, I):=\frac{\operatorname{mst}(\{v\} \cup I)}{2}$ defines a valid lower bound. Here $\operatorname{mst}(\{v\} \cup I)$ denotes the cost of a minimal spanning tree in $G^{\prime}[\{v\} \cup I]$, where G^{\prime} is the metric closure of G.

$$
(3+1+1 \text { points })
$$

Exercise 7.2. Let T be an instance of the Rectilinear Steiner Tree Problem and $r \in T$. For a rectilinear Steiner tree Y we denote by $f(Y)$ the maximum length of a path from r to any element of $T \backslash\{r\}$ in Y.
(a) Find an instance where no Steiner tree minimizes both length and f.
(b) Consider the problem of finding a shortest Steiner tree Y minimizing $f(Y)$ among all shortest Steiner trees. Is there always a tree with these properties which is a subgraph of the Hanan grid?

$$
(1+4 \text { points })
$$

Exercise 7.3. For a finite set $\emptyset \neq T \subsetneq \mathbb{R}^{2}$ we define

$$
\mathrm{BB}(T):=\max _{(x, y) \in T} x-\min _{(x, y) \in T} x+\max _{(x, y) \in T} y-\min _{(x, y) \in T} y .
$$

A Steiner tree for T is a tree Y with $T \subseteq V(Y) \subsetneq \mathbb{R}^{2}$. We denote by $\operatorname{Steiner}(T)$ the length of a shortest rectilinear (i.e. edge lengths acc. to ℓ_{1}) Steiner tree for T. Moreover let $\operatorname{MST}(T)$ be the length of a minimum spanning tree in the complete graph on T with edge costs ℓ_{1}.

Prove that:
(a) $\mathrm{BB}(T) \leq \operatorname{Steiner}(T) \leq \operatorname{MST}(T)$;
(b) Steiner $(T) \leq \frac{3}{2} \mathrm{BB}(T)$ for $|T| \leq 5$;
(c) There is no $\alpha \in \mathbb{R}$ s.t. Steiner $(T) \leq \alpha \operatorname{BB}(T)$ for all finite $\emptyset \neq T \subset \mathbb{R}^{2}$.

$$
(1+2+2 \text { points })
$$

Exercise 7.4. Let Y be a Steiner tree for terminal set T with $|T| \geq 2$ in which all leaves are terminals. Prove

$$
\sum_{t \in T}\left(\left|\delta_{Y}(t)\right|-1\right)=k-1
$$

where k is the number of full components of Y.

Deadline: June $11^{\text {th }}, 12: 15$. The websites for lecture and exercises can be found at:

> http://www.or.uni-bonn.de/lectures/ss20/chipss20_ex.html

In case of any questions feel free to contact me at ahrens@dm.uni-bonn.de.

