Exercise Set 6

Exercise 6.1. Consider quadratic netlength minimization in x-dimension based on the (quadratic) Clique netmodel i.e.

$$
\operatorname{CliquESQ}(N):=\sum_{\{p, q\} \subseteq N} \frac{w(N)}{|N|-1}(x(p)+x(\gamma(p))-x(q)-x(\gamma(q)))^{2}
$$

Show that CLiqueSQ can be replaced equivalently by the quadratic StarSQ netmodel

$$
\operatorname{StaRSQ}(N):=w^{\prime}(N) \cdot \min \left\{\sum_{p \in N}(x(p)+x(\gamma(p))-c)^{2} \mid c \in \mathbb{R}\right\}
$$

for an appropriate weight function w^{\prime}.
(4 points)
Exercise 6.2. Prove that unless $\mathrm{P}=\mathrm{NP}$, there is no polynomial time n^{α} approximation algorithm for the Quadratic Assignment Problem for any $\alpha<1$ even if $w \equiv 1, c \equiv 0, d: U \times U \rightarrow\{0,1\}$ is metric and G is a tree.

Hint: Transformation of 4-Partition, where G is chosen as a collection of stars (one for each item) whose centers are connected to (an additional) common root vertex. U can be chosen as $|U|=|V(G)|$.
(6 points)
Exercise 6.3. Consider the spreading $L P$ for $d=2$:

$$
\begin{array}{lrr}
\text { min } & \sum_{e \in E(G)} w(e) l(e) & \\
\text { s.t. } & \sum_{y \in X} l(\{x, y\}) & \geq \frac{1}{4}(|X|-1)^{3 / 2} \\
l(\{x, y\})+l(\{y, z\}) & \geq l(\{x, z\}) & x \in X \subseteq V(G) \\
l(\{x, y\}) & \geq 1 & x, y, z \in V(G) \\
l(\{x, x\}) & =0 & x, y \in V(G), x \neq y \\
& x \in V(G)
\end{array}
$$

Show that the optimum of the spreading LP is a lower bound for the cost of any 2 -dimensional arrangement.

Exercise 6.4. The Minimum Cut Linear Arrangement Problem is defined as follows: Given a hypergraph $G=(V, E)$ where $E \subseteq \mathcal{P}(V)$, find a bijective mapping $f: V \rightarrow\{1, \ldots,|V|\}$ that minimizes

$$
\max _{i \in\{1, \ldots,|V|-1\}} \mid\{e \in E: \exists v, w \in e \text { s.t. } f(v) \leq i<f(w)\} \mid
$$

Show that this problem can be solved in $O\left(n m 2^{n}\right)$ where $n:=|V|, m:=|E|$.
(5 points)

Deadline: June $4^{\text {th }}$, before the lecture. The websites for lecture and exercises can be found at:

```
http://www.or.uni-bonn.de/lectures/ss20/chipss20_ex.html
```

In case of any questions feel free to contact me at ahrens@dm.uni-bonn.de.

