Exercise Set 2

Exercise 2.1. A Boolean function $f \in B_n$ depends essentially on all its variables if for every $1 \le i \le n$ the subfunctions $f|_{x_i=0}$ and $f|_{x_i=1}$ are different.

Let $f \in B_n$ be a function that essentially depends on all its variables. Show:

- (a) $S_{B_2}(f) \ge n-1$,
- (b) $D_{B_2}(f) \ge \lceil \log_2 n \rceil$.

(5 points)

Exercise 2.2. Define a class of functions $(f_n)_{n \in \mathbb{N}}$ such that $f_n \in B_n$ and their SOP representations have size $\Omega(2^n)$.

(5 points)

Exercise 2.3. Let $f \in B_n$ be a Boolean function given as an oracle (i.e. for each $x \in \{0,1\}^n$ the value f(x) can be computed in $\mathcal{O}(1)$ time). Show that the set PI(f) of all prime implicants can be computed in $\mathcal{O}(n^23^n)$ time. (5 points)

Exercise 2.4. Consider the following recursively defined family of Boolean functions $f_{2n,m} \in B_{2n+m+1}$ $(n, m \in \mathbb{N})$:

$$\begin{aligned} f_{0,0}(x_0) &= x_0, \\ f_{0,m}(x_0, \dots, x_m) &= x_0 \wedge f^*_{0,m-1}(x_1, \dots, x_m) & (m \ge 1), \\ f_{2n,m}(x_0, \dots, x_{2n+m}) &= x_0 \wedge f_{2n-2,m}(x_2, \dots, x_{2n+m}) & (m \ge 0, n \ge 1), \end{aligned}$$

where $f^*(x_1, \ldots, x_n) := \neg f(\bar{x}_1, \ldots, \bar{x}_n) \in B_n$ is the dual function of a function $f \in B_n$. Prove the following split equation

$$f_{2n,2k+m+1}(x_0, x_1, \dots, x_{2n+2k+m+1}) = f_{2n,2k}(x_0, \dots, x_{2n+2k}) \\ \wedge f^*_{2k,m}(x_{2n+1}, x_{2n+2}, \dots, x_{2n+2k+m+1}).$$
(5 points)

Deadline: May 7^{th} , before the lecture. The websites for lecture and exercises can be found at:

http://www.or.uni-bonn.de/lectures/ss20/chipss20_ex.html

In case of any questions feel free to contact me at ahrens@dm.uni-bonn.de.