Exercise Set 1

Exercise 1.1. Prove that Satisfiability remains NP-complete if each clause contains at most three literals and each variable appears at most three times, but is in P if additionally each clause contains exactly three literals.
(4 points)
Exercise 1.2. Show that the following problem is NP-complete:
Instance: A directed Graph G.
Question: Is there some $X \subseteq G$ such that $E(G[X])=\emptyset$ and that for all $v \in V \backslash X$ we have $\delta_{G[X \cup\{v\}]}^{+}(v) \neq \emptyset$?
Hint: Use a reduction from Satisfiability.
(4 points)
Exercise 1.3. Show that the following problem is NP-complete:
Instance: An undirected graph G. Vertex pairs $\left(s_{1}, t_{1}\right), \ldots,\left(s_{k}, t_{k}\right)$.
Question: Are there vertex disjoint paths P_{1}, \ldots, P_{k}, where P_{i} is a $s_{i}-v_{i}$ path for $i=1, \ldots, k$?
(4 points)
Definition. For $\tau \leq 1$, a τ-approximation algorithm for the maximum stable set problem is a polynomial time algorithm that computes for every undirected graph $G=(V, E)$ a stable set $S \subseteq V$ such that $|S| \geq \tau \cdot \max \left\{\left|S^{*}\right| \mid S^{*} \subseteq V\right.$ is a stable set $\}$.
Exercise 1.4. Prove: If there is a $\frac{1}{2}$-approximation algorithm for the maximum stable set problem, there is also a $(1-\epsilon)$-approximation algorithm for every $\frac{1}{2} \geq$ $\epsilon>0$.
(4 points)

Deadline: Friday, May $1^{\text {st }}$ until 3:00 AM via eCampus. LaTeX submissions are highly encouraged, however, you can also submit a scan (i.e. obtained with a mobile phone). The websites for lecture and exercises can be found at:
https://www.or.uni-bonn.de/lectures/ss20/appr_ss20_ex.html
In case of any questions please contact us at approx-ss20@or.uni-bonn.de.

