Linear and Integer Programming

- Time: Tuesdays and Thursdays, 16:15-17:55 (with 10 minutes break)
- Place: Gerhard-Konow-Hörsaal, Lennéstr. 2
- Website:
www.or.uni-bonn.de/lectures/ss19/lgo_ss19.html
- Lecture notes and all slides can be found on the website.

Final Examination

- Written examination
- Dates: Monday, July 15, 2019 and Saturday, September 21, 2019.
- There will be no third examination in this semester.

Exercise Classes

- Exercise classes are two hours per week.
- Assignments are released every Thursday.
- There will be programming exercises.
- 50% of all points in the assignments are required to participate in the exam.
- Students can work in groups of two.
- All participants of a group have to be able to explain their solutions.
- Exercise classes begin in the second week.

Possible Time Slots for the Exercise Classes

(1) Mo 10-12
(2) Tu 10-12
(3) Tu 14-16
(4) We 12-14
(5) We 14-16
(6) We 16-18
(7) Th 10-12
(8)Th 12-14
(9) Th 14-16
(10) Fr 10-12
(11) Fr 14-16

We will choose four of these time slots.
Application for the exercise classes: Use the form on the website www.or.uni-bonn.de/lectures/ss19/lgo_uebung_ss19.html

Definition

- An optimization problem is a pair (I, f) with a set I and $f: I \rightarrow \mathbb{R}$.
- The elements of I are called feasible solutions of (I, f).
- If $I=\emptyset,(I, f)$ is called infeasible, otherwise we call it feasible.
- The function f is called the objective function of (I, f).
- We ask for an $x^{*} \in I$ (called optimum solution) such that
- for all $x \in I$ we have $f(x) \leq f\left(x^{*}\right)$ (then (I, f) is called a maximization problem)
- for all $x \in I$ we have $f(x) \geq f\left(x^{*}\right)$ (then (I, f) is called a minimization problem).
- (I, f) is unbounded if for all $K \in \mathbb{R}$, there is an $x \in I$ with $f(x)>K$ (for the maximization problem) or an $x \in I$ with $f(x)<K$ (for the minimization problem).
- An optimization problem is called bounded if it is not unbounded.

Linear Programming

Linear Programming
Instance: A matrix $A \in \mathbb{R}^{m \times n}$, vectors $c \in \mathbb{R}^{n}$ and $b \in \mathbb{R}^{m}$.
Task: \quad Find a vector $x \in \mathbb{R}^{n}$ with $A x \leq b$ maximizing $c^{t} x$.
Example:

$$
\begin{gathered}
\max (3,-2,5)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) \\
\text { s.t. } \quad\left(\begin{array}{rrr}
-2 & 3 & 1 \\
1 & 1 & 2
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) \leq\binom{ 5}{2}
\end{gathered}
$$

Standard Forms

Standard inequality form:

$$
\begin{align*}
& \max c^{t} x \\
& \text { s.t. } A x \leq b \tag{1}
\end{align*}
$$

Standard equational form:

$$
\begin{align*}
\max c^{t} x & \\
\text { s.t. } \quad A x & =b \tag{2}\\
x & \geq 0
\end{align*}
$$

Both forms can be transformed into each other.

Integer Linear Programming

$$
\begin{aligned}
& \text { Integer LINEAR PROGRAMMING } \\
& \text { Instance: A matrix } A \in \mathbb{R}^{m \times n}, \text { vectors } c \in \mathbb{R}^{n} \text { and } b \in \mathbb{R}^{m} . \\
& \text { Task: } \quad \text { Find a vector } x \in \mathbb{Z}^{n} \text { with } A x \leq b \text { maximizing } c^{t} x .
\end{aligned}
$$

If only some variables have to be integral \Rightarrow MIXED INTEGER LINEAR Programming (MILP)

Modelling Optimization Problems as LPs

Defintion

Let G be a directed graph with capacities $u: E(G) \rightarrow \mathbb{R}_{>0}$ and let s and t be two vertices of G. A feasible s-t-flow in (G, u) is a mapping $f: E(G) \rightarrow \mathbb{R}_{\geq 0}$ with

- $f(e) \leq u(e)$ for all $e \in E(G)$ and
- $\Delta_{f}(v):=\sum_{e \in \delta_{G}^{+}(v)} f(e)-\sum_{e \in \delta_{G}^{-}(v)} f(e)=0$ for all $v \in V(G) \backslash\{s, t\}$.

The value of an s - t-flow f is $\operatorname{val}(f)=\Delta_{f}(s)$.

Modelling Optimization Problems as LPs

Maximum-Flow Problem
Instance: A directed Graph G, capacities $u: E(G) \rightarrow \mathbb{R}_{>0}$, vertices $s, t \in V(G)$ with $s \neq t$.

Task: \quad Find an s-t-flow $f: E(G) \rightarrow \mathbb{R}_{\geq 0}$ of maximum value.

LP-formulation:
max

$$
\sum_{e \in \delta_{G}^{+}(s)} x_{e}-\sum_{e \in \delta_{G}^{-}(s)} x_{e}
$$

s.t.

$$
\begin{aligned}
x_{e} & \geq 0 & \text { for } e \in E(G) \\
x_{e} & \leq u(e) & \text { for } e \in E(G) \\
\sum_{e \in \delta_{G}^{+}(v)} x_{e}-\sum_{e \in \delta_{G}^{-}(v)} x_{e} & =0 & \text { for } v \in V(G) \backslash\{s, t\}
\end{aligned}
$$

Modelling Optimization Problems as LPs

$$
\begin{aligned}
& \text { Bottleneck MAXIMUM-FLow Problem with } 2 \text { Sources } \\
& \text { Instance: A directed Graph } G \text {, capacities } u: E(G) \rightarrow \mathbb{R}_{>0} \text {, } \\
& \text { three vertices } s_{1}, s_{2}, t \in V(G) \text {. } \\
& \text { Task: } \quad \text { Find a mapping } f: E(G) \rightarrow \mathbb{R}_{\geq 0} \text { with } \\
& \quad \text { - } f(e) \leq u(e) \text { for all } e \in E(G) \text { and } \\
& \quad \text { - } \Delta_{f}(e)=0 \text { for all } v \in V(G) \backslash\left\{s_{1}, s_{2}, t\right\} \\
& \\
& \text { such that } \min \left\{\Delta_{f}\left(s_{1}\right), \Delta_{f}\left(s_{2}\right)\right\} \text { is maximized }
\end{aligned}
$$

How can this problem be modelled by an LP?

Duality: Example

$$
\begin{aligned}
& \text { (P) } \max 12 x_{1}+10 x_{2} \\
& \text { s.t. } 4 x_{1}+2 x_{2} \leq 5 \\
& \begin{array}{l}
8 x_{1}+12 x_{2} \leq 7 \\
2 x_{1}-3 x_{2} \leq 1
\end{array}
\end{aligned}
$$

Goal: Find an upper bound on the optimum solution value.
Combine constraint 1 and 2:

$$
12 x_{1}+10 x_{2}=2 \cdot\left(4 x_{1}+2 x_{2}\right)+\frac{1}{2}\left(8 x_{1}+12 x_{2}\right) \leq 2 \cdot 5+\frac{1}{2} \cdot 7=13.5 .
$$

Combine constraint 2 and 3 :
$12 x_{1}+10 x_{2}=\frac{7}{6} \cdot\left(8 x_{1}+12 x_{2}\right)+\frac{4}{3} \cdot\left(2 x_{1}-3 x_{2}\right) \leq \frac{7}{6} \cdot 7+\frac{4}{3} \cdot 1=9.5$.

Duality: Example

$$
\begin{aligned}
& \text { (P) } \max 12 x_{1}+10 x_{2} \\
& \text { s.t. } 4 x_{1}+2 x_{2} \leq 5 \\
& 8 x_{1}+12 x_{2} \leq 7 \\
& 2 x_{1}-3 x_{2} \leq 1
\end{aligned}
$$

General approach: Find numbers $u_{1}, u_{2}, u_{3} \in \mathbb{R}_{\geq 0}$ such that

$$
12 x_{1}+10 x_{2}=u_{1} \cdot\left(4 x_{1}+2 x_{2}\right)+u_{2} \cdot\left(8 x_{1}+12 x_{2}\right)+u_{3} \cdot\left(2 x_{1}-3 x_{2}\right) .
$$

$\Rightarrow 5 u_{1}+7 u_{2}+u_{3}$ is an upper bound on the value of any solution of (P).
\Rightarrow Chose u_{1}, u_{2}, u_{3} such that $5 u_{1}+7 u_{2}+u_{3}$ is minimized.

Duality: Example

$$
\text { (P) } \left.\begin{array}{rr}
\max & 12 x_{1} \\
\text { s.t. } & 4 x_{1}+10 x_{2} \\
& 8 x_{1} \\
& +12 x_{2} \leq 5 \\
& 2 x_{1}
\end{array}\right]=3 x_{2} \leq 1 .
$$

Determine u_{1}, u_{2}, and u_{3} by the following linear program:

$$
\text { (D) } \begin{array}{rlrl}
\min 5 u_{1}+7 u_{2}+u_{3} & \\
\operatorname{s.t.} \begin{aligned}
4 u_{1}+8 u_{2} & +2 u_{3}
\end{aligned}=12 \\
& =10 \\
& 2 u_{1}+12 u_{2}-3 u_{3} & =10 \\
& u_{1} & & \\
& & & \\
& & & \geq 0 \\
& & & \\
& & & \geq 0
\end{array}
$$

\Rightarrow Any solution of (D) gives an upper bound for (P).

Duality: Example

$$
\text { (P) } \left.\begin{array}{rr}
\max & 12 x_{1} \\
\text { s.t. } & 4 x_{1}+10 x_{2} \\
& 8 x_{1} \\
& +12 x_{2} \leq 5 \\
& 2 x_{1}
\end{array}\right]=3 x_{2} \leq 1 .
$$

Determine u_{1}, u_{2}, and u_{3} by the following linear program:

$$
\text { (D) } \begin{array}{rlrl}
\min & 5 u_{1}+7 u_{2}+u_{3} & \\
\text { s.t. } 4 u_{1}+8 u_{2}+2 u_{3} & =12 \\
& 2 u_{1}+12 u_{2}-3 u_{3} & =10 \\
& u_{1} & & \\
& & & \geq 0 \\
& & & \\
& & & \geq 0
\end{array}
$$

\Rightarrow Any solution of (D) gives an upper bound for (P).

Duality: Example

$$
\text { (P) } \left.\begin{array}{rr}
\max & 12 x_{1} \\
\text { s.t. } & 4 x_{1}+10 x_{2} \\
& 8 x_{1} \\
& +12 x_{2} \leq 5 \\
& 2 x_{1}
\end{array}\right]=3 x_{2} \leq 1 .
$$

Determine u_{1}, u_{2}, and u_{3} by the following linear program:

$$
\text { (D) } \begin{array}{rlrl}
\min & 5 u_{1}+7 u_{2}+1 u_{3} & \\
\text { s.t. } 4 u_{1}+8 u_{2}+2 u_{3} & =12 \\
& 2 u_{1}+12 u_{2}-3 u_{3} & =10 \\
& u_{1} & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & 0
\end{array}
$$

\Rightarrow Any solution of (D) gives an upper bound for (P).

Duality: Example

$$
\begin{aligned}
& \text { (P) } \max 12 x_{1}+10 x_{2} \\
& \text { s.t. } 4 x_{1}+2 x_{2} \leq 5 \\
& 8 x_{1}+12 x_{2} \leq 7 \\
& 2 x_{1}-3 x_{2} \leq 1
\end{aligned}
$$

Determine u_{1}, u_{2}, and u_{3} by the following linear program:

$$
\begin{aligned}
& \text { (D) } \quad \min 5 u_{1}+7 u_{2}+u_{3} \\
& \text { s.t. } 4 u_{1}+8 u_{2}+2 u_{3}=12 \\
& 2 u_{1}+12 u_{2}-3 u_{3}=10 \\
& u_{1} \\
& \begin{aligned}
& \geq 0 \\
u_{2} & \\
& \geq 0 \\
& u_{3}
\end{aligned}
\end{aligned}
$$

\Rightarrow Any solution of (D) gives an upper bound for (P).

Duality: Example

$$
\text { (P) } \begin{array}{rr}
\max & 12 x_{1} \\
\text { s.t. } & 4 x_{1}+10 x_{2} \\
& 8 x_{1}+12 x_{2} \leq 5 \\
& 2 x_{1}-3 x_{2} \leq 1
\end{array}
$$

Determine u_{1}, u_{2}, and u_{3} by the following linear program:

$$
\text { (D) } \begin{array}{rlrl}
\min & 5 u_{1}+7 u_{2}+u_{3} & \\
\text { s.t. } 4 u_{1}+8 u_{2}+2 u_{3} & =12 \\
& 2 u_{1}+12 u_{2}-3 u_{3} & =10 \\
& u_{1} & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & &
\end{array}
$$

\Rightarrow Any solution of (D) gives an upper bound for (P).

Fourier-Motzkin Elimination I

Given a system of inequalities, check if a solution exists.

$$
\begin{array}{r}
3 x+2 y+4 z \leq 10 \\
3 x+2 z \leq 9 \\
2 x-y+5 \\
-x+2 y-z \leq 3 \\
-2 x \\
-2 y+2 z \leq 7
\end{array}
$$

First step: Get rid of variable x.

Fourier-Motzkin Elimination II

$$
\begin{array}{r}
3 x+2 y+4 z \leq 10 \\
3 x+2 z \leq 9 \\
2 x-y+5 \\
-x+2 y-z \leq 3 \\
-2 x \\
-2 y+2 z \leq 7
\end{array}
$$

is equivalent to

$$
\begin{aligned}
& x \leq \frac{10}{3}-\frac{2}{3} y-\frac{4}{3} z \\
& x \leq 3 \\
& x \leq \frac{2}{3} z \\
& x \leq \frac{5}{2} y \\
& x \geq-3+2 y-z \\
& x \geq-2 \\
& \\
& \\
& \\
& 2 y+2 z \leq 7
\end{aligned}
$$

Fourier-Motzkin Elimination III

$$
\begin{aligned}
& x \leq \frac{10}{3}-\frac{2}{3} y-\frac{4}{3} z \\
& x \leq 3 \\
& x \leq \frac{5}{2}+\frac{1}{2} y \\
& x \geq-3+2 y-2 \\
& x \geq-2 \\
& x+2 y \\
& x
\end{aligned}
$$

This system is feasible if and only if the following system has a solution:

$$
\begin{aligned}
\min \left\{\frac{10}{3}-\frac{2}{3} y-\frac{4}{3} z, \quad 3-\frac{2}{3} z,\right. & \left.\frac{5}{2}+\frac{1}{2} y\right\} \\
2 y+2 z & \geq \max \{-3+2 y-z, \quad-2\} \\
& \leq 7
\end{aligned}
$$

Fourier-Motzkin Elimination IV

$$
\begin{aligned}
\min \left\{\frac{10}{3}-\frac{2}{3} y-\frac{4}{3} z, \quad 3-\frac{2}{3} z,\right. & \left.\frac{5}{2}+\frac{1}{2} y\right\} \\
2 y+2 z & \geq 7
\end{aligned}
$$

This system can be rewritten in the following way:

$$
\begin{aligned}
& \frac{10}{3}-\frac{2}{3} y-\frac{4}{3} z \geq-3+2 y-z \\
& \frac{10}{3}-\frac{2}{3} y-\frac{4}{3} z \geq-2 \\
& 3-\frac{2}{3} z \geq-3+2 y-z \\
& 3-\frac{2}{3} z \geq-2 \\
& \frac{5}{2}+\frac{1}{2} y \geq-3+2 y-z \\
& \begin{aligned}
\frac{5}{2}+\frac{1}{2} y & \geq-2 \\
2 y+2 z & \leq 7
\end{aligned}
\end{aligned}
$$

Fourier-Motzkin Elimination V

Conversion in standard form:

$$
\begin{aligned}
& \frac{8}{3} y+\frac{1}{3} z \leq \frac{19}{3} \\
& \frac{2}{3} y+\frac{4}{3} z \leq \frac{16}{3} \\
& \frac{8}{3} y-z \leq 6 \\
& \frac{2}{3} z \leq 5 \\
& \frac{3}{2} y-z \leq \frac{11}{2} \\
& -\frac{1}{2} y \quad \leq \quad \frac{9}{2} \\
& 2 y+2 z \leq 7
\end{aligned}
$$

Iterate these steps and remove all variables.

Farkas' Lemma

Theorem (Farkas' Lemma, most general case)

For $A \in \mathbb{R}^{m_{1} \times n_{1}}, B \in \mathbb{R}^{m_{1} \times n_{2}}, C \in \mathbb{R}^{m_{2} \times n_{1}}, D \in \mathbb{R}^{m_{2} \times n_{2}}, a \in \mathbb{R}^{m_{1}}$ and $b \in \mathbb{R}^{m_{2}}$ exactly one of the two following systems has a feasible solution:
System 1:

$$
\begin{aligned}
A x+B y & \leq a \\
C x+D y & =b \\
x & \geq 0
\end{aligned}
$$

System 2:

$$
\begin{aligned}
u^{t} A+v^{t} C & \geq 0^{t} \\
u^{t} B+v^{t} D & =0^{t} \\
u & \geq 0 \\
u^{t} a+v^{t} b & <0
\end{aligned}
$$

Corollary

Let $A, B, C, D, E, F, G, H, K$ be matrices and a, b, c, d, e, f be vectors of appropriate dimensions such that:

$$
\left(\begin{array}{lll}
A & B & C \\
D & E & F \\
G & H & K
\end{array}\right) \text { is an } m \times n \text {-matrix, }
$$

$\left(\begin{array}{l}a \\ b \\ c\end{array}\right)$ is a vector of length m and $\left(\begin{array}{l}d \\ e \\ f\end{array}\right)$ is a vector of length n. Then
provided that both sets are non-empty.

Corollary

Let $A, B, C, D, E, F, G, H, K$ be matrices and a, b, c, d, e, f be vectors of appropriate dimensions such that:

$$
\left(\begin{array}{lll}
A & B & C \\
D & E & F \\
G & H & K
\end{array}\right) \text { is an } m \times n \text {-matrix, }
$$

$\left(\begin{array}{l}a \\ b \\ c\end{array}\right)$ is a vector of length m and $\left(\begin{array}{l}d \\ e \\ f\end{array}\right)$ is a vector of length n. Then
provided that both sets are non-empty.

Corollary

Let $A, B, C, D, E, F, G, H, K$ be matrices and a, b, c, d, e, f be vectors of appropriate dimensions such that:

$$
\left(\begin{array}{lll}
A & B & C \\
D & E & F \\
G & H & K
\end{array}\right) \text { is an } m \times n \text {-matrix, }
$$

$\left(\begin{array}{l}a \\ b \\ c\end{array}\right)$ is a vector of length m and $\left(\begin{array}{l}d \\ e \\ f\end{array}\right)$ is a vector of length n. Then
provided that both sets are non-empty.

Corollary

Let $A, B, C, D, E, F, G, H, K$ be matrices and a, b, c, d, e, f be vectors of appropriate dimensions such that:

$$
\left(\begin{array}{lll}
A & B & C \\
D & E & F \\
G & H & K
\end{array}\right) \text { is an } m \times n \text {-matrix, }
$$

$\left(\begin{array}{l}a \\ b \\ c\end{array}\right)$ is a vector of length m and $\left(\begin{array}{l}d \\ e \\ f\end{array}\right)$ is a vector of length n. Then
provided that both sets are non-empty.

Corollary

Let $A, B, C, D, E, F, G, H, K$ be matrices and a, b, c, d, e, f be vectors of appropriate dimensions such that:

$$
\left(\begin{array}{lll}
A & B & C \\
D & E & F \\
G & H & K
\end{array}\right) \text { is an } m \times n \text {-matrix, }
$$

$\left(\begin{array}{l}a \\ b \\ c\end{array}\right)$ is a vector of length m and $\left(\begin{array}{l}d \\ e \\ f\end{array}\right)$ is a vector of length n. Then
provided that both sets are non-empty.

Theorem (Strict Complementary Slackness)

Let $\max \left\{c^{t} x \mid A x \leq b\right\}$ and $\min \left\{b^{t} y \mid A^{t} y=c, y \geq 0\right\}$ be a pair of a primal and a dual linear program that are both feasible. Then, for each inequality $a_{i}^{t} x \leq b_{i}$ in $A x \leq b$ exactly one of the following two statements holds:
(a) The primal LP $\max \left\{c^{t} x \mid A x \leq b\right\}$ has an optimum solution x^{*} with $a_{i}^{t} x^{*}<b_{i}$.
(b) The dual LP $\min \left\{b^{t} y \mid A^{t} y=c, y \geq 0\right\}$ has an optimum solution y^{*} with $y_{i}^{*}>0$.

Max-Flow Problem

Assumption: No edges enter s or leave t.

LP-formulation:

$$
\begin{array}{rll}
\max & \sum_{e \in \delta_{G}^{+}(s)} x_{e} & \\
& x_{e} & \geq 0 \\
\text { s.t. } & \text { for } e \in E(G) \\
& x_{e} \leq u(e) & \text { for } e \in E(G) \\
& \sum_{e \in \delta_{G}^{+}(v)} x_{e}-\sum_{e \in \delta_{G}^{-}(v)} & =0
\end{array} \text { for } v \in V(G) \backslash\{s, t\}
$$

Dual LP:

$$
\min \sum_{e \in E(G)} u(e) y_{e}
$$

s.t. $\quad y_{e} \geq 0$ for $e \in E(G)$

$$
\begin{aligned}
y_{e}+z_{v}-z_{w} & \geq 0 \text { for } e=(v, w) \in E(G),\{s, t\} \cap\{v, w\}=\emptyset \\
y_{e}+z_{v} & \geq 0 \text { for } e=(v, t) \in E(G), v \neq s \\
y_{e}-z_{w} & \geq 1 \text { for } e=(s, w) \in E(G), w \neq t \\
y_{e} & \geq 1 \text { for } e=(s, t) \in E(G)
\end{aligned}
$$

Max-Flow Problem

Assumption: No edges enter s or leave t.
LP-formulation:

$$
\begin{aligned}
\max & \sum_{e \in \delta_{G}^{+}(s)} x_{e} & & \\
\text { s.t. } & x_{e} & \geq 0 & \text { for } e \in E(G) \\
& x_{e} & \leq u(e) & \text { for } e \in E(G) \\
& \sum_{e \in \delta_{G}^{+}(v)} x_{e}-\sum_{e \in \delta_{G}^{-}(v)} x_{e} & =0 & \text { for } v \in V(G) \backslash\{s, t\}
\end{aligned}
$$

Dual LP (simplified):

min

$$
\sum_{e \in E(G)} u(e) y_{e}
$$

s.t.

$$
y_{e} \geq 0 \quad \text { for } e \in E(G)
$$

$$
y_{e}+z_{v}-z_{w} \geq 0 \quad \text { for } e=(v, w) \in E(G)
$$

$$
z_{s}=-1
$$

$$
z_{t}=0
$$

Max-Flow Problem

Assumption: No edges enter sor leave t.

LP-formulation:

max
s.t.

$$
\sum_{e \in \delta_{G}^{+}(s)} x_{e}
$$

$$
\begin{array}{rlrl}
x_{e} & \geq 0 & \text { for } e \in E(G) \\
x_{e} & \leq u(e) & \text { for } e \in E(G) \\
e \in \delta_{G}^{+}(v)
\end{array} x_{e}-\sum_{e \in \delta_{G}^{-}(v)} x_{e}=0 \quad \text { for } v \in V(G) \backslash\{s, t\}
$$

Dual LP:

$$
\left.\begin{array}{rl}
\min & \sum_{e \in E(G)} u(e) y_{e} \\
\text { s.t. } & y_{e}
\end{array}\right) \quad \geq \quad \text { for } e \in E(G)
$$

Proposition

Let $P=\left\{x \in \mathbb{R}^{n} \mid A x \leq b\right\}$ be a polyhedron and $F \subseteq P$. Then, the following statements are equivalent:
(a) F is a face of P.
(b) There is a vector $c \in \mathbb{R}^{n}$ such that $\delta:=\max \left\{c^{t} x \mid x \in P\right\}<\infty$ and $F=\left\{x \in P \mid c^{t} x=\delta\right\}$.
(c) There is a subsystem $A^{\prime} x \leq b^{\prime}$ of $A x \leq b$ such that

$$
F=\left\{x \in P \mid A^{\prime} x=b^{\prime}\right\} \neq \emptyset .
$$

Simplex Algorithm: Example I

$$
\begin{aligned}
& \max \quad x_{1}+x_{2} \\
& \begin{aligned}
\text { s.t. } \left.\begin{array}{rl}
-x_{1} & +x_{2}+x_{3} \\
x_{1} & \\
& \\
& \\
x_{2} & \\
& \\
x_{1} & , x_{4}, x_{3}, x_{4}, x_{5}
\end{array}\right) \geq 0
\end{aligned}
\end{aligned}
$$

Initial basis: $\{3,4,5\} . \Rightarrow A_{B}=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$
Simplex tableau:

$$
\begin{array}{rlllll}
x_{3} & =1 & + & x_{1} & - & x_{2} \\
x_{4} & =3 & - & x_{1} & & \\
x_{5} & =2 & & & - & x_{2} \\
\hline z & = & & x_{1} & + & x_{2}
\end{array}
$$

Recent solution: (0,0,1,3,2)

Simplex Algorithm: Example I

$$
\begin{array}{rllll}
x_{3} & =1 & +x_{1} & - & x_{2} \\
x_{4} & =3 & -x_{1} & & \\
x_{5} & =2 & & & - \\
x_{2} \\
\hline z & = & & x_{1}+ & x_{2}
\end{array}
$$

Increase exactly one of the non-basic variables with positive coefficient in the objective function.
We choose x_{2}. How much can we increase it?
Constraints:
$x_{3}=1+x_{1}-x_{2}: \quad x_{2}$ cannot get larger than 1 .
$x_{4}=3-x_{1} \quad: \quad$ no constraint on x_{2}.
$x_{5}=2 \quad-x_{2}: \quad x_{2}$ cannot get larger than 2.
Strictest constraint: $x_{3}=1+x_{1}-x_{2}$
\Rightarrow Replace 3 by 2 in B.

Simplex Algorithm: Example I

First tableau:

$$
\begin{array}{rllll}
x_{3} & =1 & +x_{1} & - & x_{2} \\
x_{4} & =3 & -x_{1} & & \\
x_{5} & =2 & & & - \\
x_{2} \\
\hline z & = & & x_{1} & + \\
x_{2}
\end{array}
$$

Replace 3 by 2 in the basis B : $B=\{2,4,5\}$:
$x_{2}=1+x_{1}-x_{3}$.
Second tableau:

$$
\begin{aligned}
& x_{2}=1+x_{1} \\
& x_{4}=3-x_{3} \\
& x_{5}=1-x_{1} \\
& x_{1}+ \\
& x_{3} \\
& \hline z=1+2 x_{1}-x_{3}
\end{aligned}
$$

Recent solution: ($0,1,0,3,1$)

Simplex Algorithm: Example I

Second tableau:

$$
\begin{aligned}
x_{2} & =1+x_{1}-x_{3} \\
x_{4} & =3-x_{1} \\
x_{5} & =1-x_{1}+x_{3} \\
\hline z & =1+2 x_{1}-x_{3}
\end{aligned}
$$

Only one candidate: x_{1}
$x_{5}=1-x_{1}+x_{3}$ is critical. Replace 5 by 1 in B : $B=\{1,2,4\}$.
$x_{1}=1+x_{3}-x_{5}$.
Third tableau:

$$
\begin{aligned}
x_{1} & =1 \\
x_{2} & =2 \\
x_{4} & =2-x_{3}
\end{aligned}-x_{5}-x_{3}+x_{5} .
$$

Recent solution: $x=(1,2,0,2,0)$.

Simplex Algorithm: Example I

Third tableau:

$$
\begin{aligned}
& x_{1}=1+x_{3}-x_{5} \\
& x_{2}=2 \\
& x_{4}=2-x_{3} \\
& \hline z=3+x_{5} \\
& \hline z+x_{3}-2 x_{5}
\end{aligned}
$$

Only one candidate: x_{3}
$x_{4}=2-x_{3}+x_{5}$ is critical. Replace 4 by 3 in $B: B=\{1,2,3\}$.
$x_{3}=2-x_{4}+x_{5}$
Fourth tableau:

$$
\left.\begin{array}{rl}
x_{1} & =3-x_{4} \\
x_{2} & =2 \\
x_{3} & =2-x_{4} \\
\hline z & =5-x_{5} \\
\hline z & -x_{4}
\end{array}\right) x_{5}
$$

Recent solution: $x=(3,2,2,0,0)$.

Simplex Algorithm: Example I

Fourth tableau:

$$
\begin{aligned}
& x_{1}=3-x_{4} \\
& x_{2}=2 \quad-x_{5} \\
& \begin{array}{c}
x_{3}=2-x_{4}+x_{5} \\
\hline z=5-x_{4}-x_{5}
\end{array}
\end{aligned}
$$

Recent solution: $x=(3,2,2,0,0)$.
This is an optimum solution!

Simplex Algorithm: Example II

Second Example: Unboundedness

Simplex Algorithm: Example II: Unboundedness

$$
\begin{array}{rr}
\max & x_{1} \\
\text { s.t. } & x_{1}-x_{2}+x_{3} \\
& \\
& -x_{1}+x_{2} \\
& x_{1}, x_{2}, x_{3}, \\
& , x_{4}
\end{array}=2
$$

Initial basis: $\mathrm{B}=\{3,4\}$
Simplex Tableau:

$$
\begin{aligned}
x_{3} & =1-x_{1}+x_{2} \\
x_{4} & =2+x_{1}-x_{2} \\
\hline z & =\frac{x_{1}}{}
\end{aligned}
$$

Recent solution: $x=(0,0,1,2)$.

Simplex Algorithm: Example II: Unboundedness

First Tableau:

$$
\begin{aligned}
& x_{3}=1-x_{1}+x_{2} \\
& x_{4}=2+x_{1}-x_{2} \\
& \hline z= \\
& x_{1}
\end{aligned}
$$

Only one candidate: $x_{1} \cdot x_{3}=1-x_{1}+x_{2}$ is critical. Replace 3 by 1 in $B: B=\{1,4\}$.
$x_{1}=1+x_{2}-x_{3}$.
Second Tableau:

$$
\begin{aligned}
x_{1} & =1+x_{2}-x_{3} \\
x_{4} & =3 \\
\hline z & =1+x_{3} \\
\hline z & -x_{2}
\end{aligned}
$$

Recent solution:
$x=(1,0,0,3)$.

Simplex Algorithm: Example II: Unboundedness

Second Tableau:

$$
\begin{aligned}
x_{1} & =1+x_{2}-x_{3} \\
x_{4} & =3 \\
\hline z & =1+x_{2}-x_{3}
\end{aligned}
$$

Only one candidate: x_{2}. No constraint for it!
\Rightarrow The LP is unbounded

Simplex Algorithm: Example III

Second Example: Degeneracy

Simplex Algorithm: Example III: Degeneracy

Initial basis: $B=\{3,4\}$
Simplex Tableau:

$$
\begin{array}{rlrlr}
x_{3} & = & x_{1} & - & x_{2} \\
x_{4} & = & 2 & -x_{1} & \\
\hline z & = & & & x_{2}
\end{array}
$$

$\Rightarrow x=(0,0,0,2):$ degenerated solution.

Simplex Algorithm: Example III: Degeneracy

First Tableau:

$$
\begin{array}{rlrl}
x_{3} & = & x_{1} & - \\
x_{2} \\
x_{4} & = & 2-x_{1} & \\
\hline z & = & & x_{2}
\end{array}
$$

Want to increase $x_{2} . x_{3}=x_{1}-x_{2}$ is critical. Replace 3 by 2 in B :
$B=\{2,4\}$.
$x_{2}=x_{1}-x_{3}$. We will replace 3 by 2 in the basis.
But: We cannot increase x_{2}.
Second Tableau:

$$
\begin{aligned}
x_{2} & = & x_{1} & -x_{3} \\
x_{4} & = & 2-x_{1} & \\
\hline z & = & x_{1} & -x_{3}
\end{aligned}
$$

Recent solution: $x=(0,0,0,2)$.

Simplex Algorithm: Example III: Degeneracy

Second Tableau:

$$
\begin{aligned}
x_{2} & = & x_{1} & -x_{3} \\
x_{4} & = & 2-x_{1} & \\
\hline z & = & x_{1} & -x_{3}
\end{aligned}
$$

Increase $x_{1}, x_{4}=2-x_{1}$ is critical. $x_{1}=2-x_{4}$. New base $B=\{1,2,0,0\}$.
Third Tableau:

$$
\begin{aligned}
x_{1} & =2 \\
x_{2} & =2-x_{3} \\
\hline z & =2-x_{4} \\
\hline z & x_{3}
\end{aligned}
$$

Optimum solution: $x=(2,2,0,0)$.

The Simplex Algorithm

Algorithm 1: Simplex Algorithm
Input: $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}$, and $c \in \mathbb{R}^{n}$
Output: $\tilde{x} \in\left\{x \in \mathbb{R}^{n} \mid A x=b, x \geq 0\right\}$ maximizing $c^{t} x$ or the message that $\max \left\{c^{t} x \mid A x=b, x \geq 0\right\}$ is unbounded or infeasible
1 Compute a feasible basis B;
2 If no such basis exists, stop with the message "INFEASIBLE";
3 Set $N=\{1, \ldots, n\} \backslash B$ and compute the feasible basic solution x for B;

4 Compute the simplex tableau | $x_{B}=p+Q x_{N}$ |
| :--- |
| $z=z_{0}+r^{t} x_{N}$ | for B;

5 if $r \leq 0$ then
L return $\tilde{x}=x$;
6 Choose $\alpha \in N$ with $r_{\alpha}>0$;
7 if $q_{i \alpha} \geq 0$ for all $i \in B$ then
return "UNBOUNDED";
8 Choose $\beta \in B$ with $q_{\beta \alpha}<0$ and $\frac{p_{\beta}}{q_{\beta \alpha}}=\max \left\{\left.\frac{p_{i}}{q_{i \alpha}} \right\rvert\, q_{i \alpha}<0, i \in B\right\}$;
9 Set $B=(B \backslash\{\beta\}) \cup\{\alpha\}$;
10 GOTO line 3;

The Simplex Algorithm

Algorithm 2: Simplex Algorithm
Input: $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}$, and $c \in \mathbb{R}^{n}$
Output: $\tilde{x} \in\left\{x \in \mathbb{R}^{n} \mid A x=b, x \geq 0\right\}$ maximizing $c^{t} x$ or the message that $\max \left\{c^{t} x \mid A x=b, x \geq 0\right\}$ is unbounded or infeasible
1 Compute a feasible basis B;
2 If no such basis exists, stop with the message "INFEASIBLE";
3 Set $N=\{1, \ldots, n\} \backslash B$ and compute the feasible basic solution x for B;
4 Compute the simplex tableau $\frac{x_{B}=p+Q x_{N}}{z=z_{0}+r^{t} x_{N}}$ for B;
5 if $r \leq 0$ then return $\tilde{x}=x$;
6 Choose $\alpha \in N$ with $r_{\alpha}>0$;
7 if $q_{i \alpha} \geq 0$ for all $i \in B$ then
return "UNBOUNDED";
8 Choose $\beta \in B$ with $q_{\beta \alpha}<0$ and $\frac{p_{\beta}}{q_{\beta \alpha}}=\max \left\{\left.\frac{p_{i}}{q_{i \alpha}} \right\rvert\, q_{i \alpha}<0, i \in B\right\}$;
9 Set $B=(B \backslash\{\beta\}) \cup\{\alpha\}$;
10 GOTO line 3;

The Simplex Algorithm

Algorithm 3: Simplex Algorithm
Input: $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}$, and $c \in \mathbb{R}^{n}$
Output: $\tilde{x} \in\left\{x \in \mathbb{R}^{n} \mid A x=b, x \geq 0\right\}$ maximizing $c^{t} x$ or the message that $\max \left\{c^{t} x \mid A x=b, x \geq 0\right\}$ is unbounded or infeasible
1 Compute a feasible basis B;
2 If no such basis exists, stop with the message "INFEASIBLE";
3 Set $N=\{1, \ldots, n\} \backslash B$ and compute the feasible basic solution x for B;
4 Compute the simplex tableau $\frac{x_{B}=p+Q x_{N}}{z=z_{0}+r^{t} x_{N}}$ for B;
5 if $r \leq 0$ then return $\tilde{x}=x$;
6 Choose $\alpha \in N$ with $r_{\alpha}>0$;
7 if $q_{i \alpha} \geq 0$ for all $i \in B$ then
return "UNBOUNDED";
8 Choose $\beta \in B$ with $q_{\beta \alpha}<0$ and $\frac{p_{\beta}}{q_{\beta \alpha}}=\max \left\{\left.\frac{p_{i}}{q_{i \alpha}} \right\rvert\, q_{i \alpha}<0, i \in B\right\}$;
9 Set $B=(B \backslash\{\beta\}) \cup\{\alpha\}$;
10 GOTO line 3;

Definition

Let G be a directed graph with capacities $u: E(G) \rightarrow \mathbb{R}_{>0}$ and numbers $b: V(G) \rightarrow \mathbb{R}$ with $\sum_{v \in V(G)} b(v)=0$. A feasible
b-flow in (G, u, b) is a mapping $f: E(G) \rightarrow \mathbb{R}_{\geq 0}$ with

- $f(e) \leq u(e)$ for all $e \in E(G)$ and
- $\sum_{e \in \delta_{G}^{+}(v)} f(e)-\sum_{e \in \delta_{G}^{-}(v)} f(e)=b(v)$ for all $v \in V(G)$.

Notation:

- $b(v)$: balance of v.
- If $b(v)>0$, we call it the supply of v.
- If $b(v)<0$, we call it the demand of v.
- Nodes v of G with $b(v)>0$ are called sources.
- Nodes v with $b(v)<0$ are called sinks.

Minimum-Cost Flow Problem

- Input: A directed graph G, capacities $u: E(G) \rightarrow \mathbb{R}_{>0}$, numbers $b: V(G) \rightarrow \mathbb{R}$ with $\sum_{v \in V(G)} b(v)=0$, edge costs $c: E(G) \rightarrow \mathbb{R}$.
- Task: Find a b-flow f minimizing $\sum_{e \in E(G)} c(e) \cdot f(e)$.

Definition

Let G be a directed graph.

- For $e=(v, w)$ let $\overleftarrow{e}=(w, v)$ its reverse edge.
- Define \overleftrightarrow{G} by $V(\stackrel{\leftrightarrow}{G})=V(G)$ and $E(\stackrel{\leftrightarrow}{G})=E(G) \dot{U}\{\overleftarrow{e} \mid e \in E(G)\}$.
- Edge costs $c: E(G) \rightarrow \mathbb{R}$ are extended to $E(\stackrel{\leftrightarrow}{G})$ by $c(\overleftarrow{e}):=-c(e)$.
- Let (G, u, b, c) be a Minimum-Cost Flow instance and let f be a b-flow in (G, u). The residual graph $G_{u, f}$ is defined by

$$
\begin{aligned}
& V\left(G_{u, f}\right):=V(G) \text { and } \\
& E\left(G_{u, f}\right):=\{e \in E(G) \mid f(e)<u(e)\} \quad \dot{\cup} \quad\{\overleftarrow{e} \in E(\overleftrightarrow{G}) \mid f(e)>0\} .
\end{aligned}
$$

- For $e \in E(G)$ we define the residual capacity by

$$
u_{f}(e)=u(e)-f(e) \text { and by } u_{f}(\overleftarrow{e})=f(e) .
$$

Augmenting Flow

If P is a subgraph of the residual graph $G_{u, f}$ then augmenting f along P by γ (for $\gamma>0$) means increasing P on forward edges in P (i.e. edges in $E(G) \cap E(P)$) by γ and reducing it on reverse edges in P by γ.

Definition

Let (G, u, b, c) be a Minimum-Cost FLow instance with G connected. A spanning tree structure is a quadruple (r, T, L, U) where $r \in V(G)$, $E(G)=T \dot{U} L \dot{U} U,|T|=|V(G)|-1$, and $(V(G), T)$ does not contain an undirected cycle. The b-flow f associated to (r, T, L, U) is defined by

- $f(e)=0$ for $e \in L$,
- $f(e)=u(e)$ for $e \in U$,
- $f(e)=\sum_{v \in C_{e}} b(v)+\sum_{e^{\prime} \in U \cap \delta^{-}\left(C_{e}\right)} u\left(e^{\prime}\right)-\sum_{e^{\prime} \in U \cap \delta^{+}\left(C_{e}\right)} u\left(e^{\prime}\right)$ for
$e \in E(T)$ where C_{e} is vertex set of the the connected component for $(V(G), T \backslash\{e\})$ containing v (for $e=(v, w)$).
The structure (r, T, L, U) is called feasible if $0 \leq f(e) \leq u(e)$ for all $e \in E(T)$. An edge $(v, w) \in E(T)$ is called downward if v is on the undirected r - w-path in T, otherwise is is called upward.

Definition

A feasible spanning tree structure (r, T, L, U) is strongly feasible if $0<f(e)$ for every downward edge $e \in E(T)$ and $f(e)<u(e)$ for every upward edge $e \in E(T)$.

Definition

Let (r, T, L, U) be a spanning tree structure. The unique function $\pi: V(G) \rightarrow \mathbb{R}$ with $\pi(r)=0$ and $c_{\pi}(e):=c(e)+\pi(v)-\pi(w)=0$ for all $e=(v, w) \in T$ is called the potential associated to (r, T, L, U).

Algorithm 4: Network Simplex Algorithm

Input: A Min-Cost-FLow instance (G, u, b, c);
A strongly feasible spanning tree structure (r, T, L, U).
Output: A minimum-cost flow f.
1 Compute b-flow f and potential π associated to (r, T, L, U);
$2 e_{0}:=$ an edge with $e_{0} \in L$ and $c_{\pi}\left(e_{0}\right)<0$ or with $e_{0} \in U$ and $c_{\pi}\left(e_{0}\right)>0$;
3 if (No such edge exists) then return f
$4 C$:= the fund. circuit of e_{0} (if $e_{0} \in L$) or of $\overleftarrow{e_{0}}$ (if $e_{0} \in U$) and let $\rho=c_{\pi}\left(e_{0}\right)$;
$5 \gamma:=\min _{e^{\prime} \in E(C)} u_{f}\left(e^{\prime}\right)$.
$6 e^{\prime}:=$ last edge on C with $u_{f}\left(e^{\prime}\right)=\gamma$ when C is traversed starting at the peak;
7 Let e_{1} be the corresponding edge in G, i.e. $e^{\prime}=e_{1}$ or $e^{\prime}=\overleftarrow{e_{1}}$;
8 Remove e_{0} from L or U;
9 Set $T=\left(T \cup\left\{e_{0}\right\}\right) \backslash\left\{e_{1}\right\}$;
${ }^{10}$ if $e^{\prime}=e_{1}$ then Set $U=U \cup\left\{e_{1}\right\}$;
${ }^{11}$ else Set $L=L \cup\left\{e_{1}\right\}$;
12 Augment f along γ by C;
${ }^{13}$ Let X be the connected component of $\left(V(G), T \backslash\left\{e_{0}\right\}\right)$ that contains r;
14 if $e_{0} \in \delta^{+}(X)$ then Set $\pi(v)=\pi(v)+\rho$ for $v \in V(G) \backslash X$;
15 if $e_{0} \in \delta^{-}(X)$ then Set $\pi(v)=\pi(v)-\rho$ for $v \in V(G) \backslash X$;
16 go to line 2;

Illustration:

Illustration:

Cost of fundamental circuit $=c_{\pi}\left(e_{0}\right)$.

Half-Ball Lemma

$$
B^{n} \cap\left\{x \in \mathbb{R}^{n} \mid x_{1} \geq 0\right\} \subseteq E
$$

with

$$
E=\left\{x \in \mathbb{R}^{n} \left\lvert\, \frac{(n+1)^{2}}{n^{2}}\left(x_{1}-\frac{1}{n+1}\right)^{2}+\frac{n^{2}-1}{n^{2}} \sum_{i=2}^{n} x_{i}^{2} \leq 1\right.\right\}
$$

Moreover, $\frac{\operatorname{vol}(E)}{\operatorname{vol}\left(B^{n}\right)} \leq e^{-\frac{1}{2(n+1)}}$.

Algorithm 5: Idealized Ellipsoid Algorithm
Input: A separation oracle for a closed convex set $K \subseteq \mathbb{R}^{n}$, a number $R>0$ with $K \subseteq\left\{x \in \mathbb{R}^{n} \mid x^{t} x \leq R^{2}\right\}$, and a number $\epsilon>0$.
Output: An $x \in K$ or the message "vol $(K)<\epsilon$ ".
$1 p_{0}:=0, A_{0}:=R^{2} I_{n} ;$
2 for $k=0, \ldots, N(R, \epsilon):=\left\lfloor 2(n+1)\left(n \ln (2 R)+\ln \left(\frac{1}{\epsilon}\right)\right)\right\rfloor$ do
$3 \quad$ if $p_{k} \in K$ then

return p_{k};

Let $\bar{a} \in \mathbb{R}^{n}$ be a vector with $\bar{a}^{t} y>\bar{a}^{t} p_{k}$ for all $y \in K$;
$b_{k}:=\frac{A_{k} \bar{a}}{\sqrt{\bar{a}^{2} A_{k}} \bar{a} \bar{a}} ;$
$p_{k+1}:=p_{k}+\frac{1}{n+1} b_{k} ;$
$8 \quad A_{k+1}:=\frac{n^{2}}{n^{2}-1}\left(A_{k}-\frac{2}{n+1} b_{k} b_{k}^{t}\right)$;
9 return "vol $(K)<\epsilon$ ";
$\widetilde{p_{k}}$ and $\widetilde{A_{k}}$: exact values
p_{k} and A_{k} : rounded values
Adjust $\widetilde{A_{k}}$ by multiplying it by $\mu=1+\frac{1}{2 n(n+1)}$.
$x \in K \Rightarrow$

- $\left(x-\widetilde{p}_{k}\right)^{t}{\widetilde{A_{k}}}^{-1}\left(x-\widetilde{p}_{k}\right) \leq 1-\frac{1}{4 n^{2}}$
- $\left(x-p_{k}\right)^{t} A_{k}^{-1}\left(x-p_{k}\right) \leq 1-\frac{1}{4 n^{2}}+2 \sqrt{n} \delta\left\|{\widetilde{A_{k}}}^{-1}\right\|\left(R+\left\|\widetilde{p_{k}}\right\|\right)+$

$$
n \delta^{2}\left\|{\widetilde{A_{k}}}^{-1}\right\|+\left(R+\left\|p_{k}\right\|\right)^{2}\left\|A_{k}^{-1}\right\| \cdot\left\|{\widetilde{A_{k}}}^{-1}\right\| \cdot n \delta
$$

Goal is to choose δ such that

- $2 \sqrt{n} \delta\left\|{\widetilde{A_{k}}}^{-1}\right\|\left(R+\left\|\widetilde{p_{k}}\right\|\right)+n \delta^{2}\left\|{\widetilde{A_{k}}}^{-1}\right\|+\left(R+\left\|p_{k}\right\|\right)^{2}\left\|A_{k}^{-1}\right\|$.
$\left\|{\widetilde{A_{k}}}^{-1}\right\| n \delta<\frac{1}{4 n^{2}}$
- $\delta\left\|{\widetilde{A_{k+1}}}^{-1}\right\|<\frac{1}{4(n+1)^{3}}$

Proposition

Assume that $\delta \leq \frac{1}{12 n 4^{k}}$ in iteration k of the ELLIPSOID METHOD. Then:
(a) A_{k} is positive definite.
(b) $\left\|p_{k}\right\| \leq R 2^{k},\left\|\widetilde{p_{k}}\right\| \leq R 2^{k}$.
(c) $\left\|A_{k}\right\| \leq R^{2} 2^{k},\left\|\widetilde{A_{k}}\right\| \leq R^{2} 2^{k}$.
(d) $\left\|A_{k}^{-1}\right\| \leq R^{-2} 4^{k},\left\|\widetilde{A_{k}}{ }^{-1}\right\| \leq R^{-2} 4^{k}$.

Algorithm 6: Ellipsoid Algorithm
Input: A separation oracle for a closed convex set $K \subseteq \mathbb{R}^{n}$, a number $R>0$ with $K \subseteq\left\{x \in \mathbb{R}^{n} \mid x^{t} x \leq R^{2}\right\}$, and a number $\epsilon>0$
Output: An $x \in K$ or the message "vol $(K)<\epsilon$ ".
$1 p_{0}:=0, A_{0}:=R^{2} I_{n} ;$
2 for $k=0, \ldots, N(R, \epsilon):=\left\lceil 8(n+1)\left(n \ln (2 R)+\ln \left(\frac{1}{\epsilon}\right)\right)\right\rceil$ do
3 if $p_{k} \in K$ then
return p_{k};
$5 \quad$ Let $\bar{a} \in \mathbb{R}^{n}$ be a vector with $\bar{a}^{t} y>\bar{a}^{t} p_{k}$ for all $y \in K$;
6
$b_{k}:=\frac{A_{k} \bar{a}}{\sqrt{\bar{a} A_{k}}{ }_{k} \bar{a} \bar{a}} ;$
p_{k+1} an approximation of $\widetilde{p_{k+1}}:=p_{k}+\frac{1}{n+1} b_{k}$ with maximum error $\delta<\left(2^{6(N(R, \epsilon)+1)} 16 n^{3}\right)^{-1} ;$
$8 \quad A_{k+1}$ a symmetric approximation of
$\widetilde{A_{k+1}}:=\left(1+\frac{1}{2 n(n+1)}\right) \frac{n^{2}}{n^{2}-1}\left(A_{k}-\frac{2}{n+1} b_{k} b_{k}^{t}\right)$ with maximum error $\delta ;$
9 return "vol $(K)<\epsilon$ ";

Theorem

Let $P=\left\{x \in \mathbb{R}^{n} \mid A x \leq b\right\}$ with $A \in \mathbb{Q}^{m \times n}$ and $b \in \mathbb{Q}^{m}$. Then, the following statements are equivalent:
(a) P is integral
(b) Each face of P contains at least one integral vector.
(c) Each minimal face of P contains at least one integral vector.
(d) Each supporting hyperplane of P contains at least one integral vector.
(e) Each rational supporting hyperplane of P contains at least one integral vector.
(f) $\max \left\{c^{t} x \mid x \in P\right\}$ is attained by an integral vector for each c for which the maximum is finite.
(g) $\max \left\{c^{t} x \mid x \in P\right\}$ is an integer for each integral vector c for which the maximum is finite.

Theorem

A matrix $A=\left(a_{i j}\right)_{\substack{i=1, \ldots, m \\ j=1, \ldots, n}} \in \mathbb{Z}^{m \times n}$ is totally unimodular if and only if for each set $R \subseteq\{1, \ldots, n\}$ there is a partition $R=R_{1} \cup R_{2}$ such that for each $i \in\{1, \ldots, m\}: \sum_{j \in R_{1}} a_{i j}-\sum_{j \in R_{2}} a_{i j} \in\{-1,0,1\}$.

The incidence matrix of an undirected graph G is the matrix $A_{G}=\left(a_{v, e}\right)_{\substack{v \in V(G) \\ e \in E(G)}}$ which is defined by:

$$
a_{v, e}= \begin{cases}1, & \text { if } v \in e \\ 0, & \text { if } v \notin e\end{cases}
$$

The incidence matrix of a directed graph G is the matrix $A_{G}=\left(a_{v, e}\right)_{\substack{v \in V(G) \\ e \in E(G)}}$ which is defined by:

$$
a_{v,(x, y)}= \begin{cases}-1, & \text { if } v=x \\ 1, & \text { if } v=y \\ 0, & \text { if } v \notin\{x, y\}\end{cases}
$$

Definition

Let $P \subseteq \mathbb{R}^{n}$ be a convex set. Let M be the set of all rational half-spaces $H=\left\{x \in \mathbb{R}^{n} \mid c^{t} x \leq \delta\right\}$ with $P \subseteq H$. Then, we define

$$
P^{\prime}:=\bigcap_{H \in M} H_{l} .
$$

We set $P^{(0)}:=P$ and $P^{(i+1)}:=\left(P^{(i)}\right)^{\prime}$ for $i \in \mathbb{N} \backslash\{0\}$. $P^{(i)}$ is the i-th Gomory-Chvátal-truncation of P.

Lemma

Let $H=\left\{x \in \mathbb{R}^{n} \mid c^{t} x \leq \delta\right\}$ be a rational half-space such that the components of c are relatively prime integers. Then $H_{l}=H^{\prime}=\left\{x \in \mathbb{R}^{n} \mid c^{t} x \leq\lfloor\delta\rfloor\right\}$.

