1. In the job assignment problem, \(n \) jobs with execution times \(t_1, \ldots, t_n \in \mathbb{R}_{\geq 0} \) need to be processed by \(m \) workers. For each job \(i \) we are given by \(S_i \subseteq \{1, \ldots, m\} \) the set of workers that are qualified to perform job \(i \). It is possible for several workers to process the same job in parallel to speed up the process but one worker can only process one job at a time.

(a) Formulate an LP minimizing the makespan for processing all jobs (the time until the last worker finishes).

(b) Dualize this LP. (2+2 points)

2. Prove that a polyhedron \(P \subseteq \mathbb{R}^n \) is of dimension \(n \) if and only if \(P \) contains a vector \(x \) in its interior (i.e. there is some \(\varepsilon > 0 \) such that an \(n \)-dimensional ball \(B = \{y \in \mathbb{R}^n \mid \|y - x\|_2 \leq \varepsilon\} \) with radius \(\varepsilon \) and center \(x \) is contained in \(P \)). (4 points)

3. Let \(C_n := [-1,+1]^n \) be an \(n \)-dimensional hypercube. Determine the number \(f_k \) of \(k \)-dimensional faces for \(k = 0 \ldots n \) and the total number of faces. Prove the correctness of your answers. (3 points)

4. For a polytope \(P = \{x \in \mathbb{R}^n \mid Ax \leq b\} \neq \emptyset \) let \(P' := \{(x,t) \in \mathbb{R}^n \times \mathbb{R} \mid Ax \leq tb, 0 \leq t \leq 1\} \).

(a) Show that \(P' = \text{conv}(\{(P \times \{1\}) \cup \{0\})\).\)

(b) Prove that for each face \(F \) of \(P \) the set \(\text{conv}((F \times \{1\}) \cup \{0\}) \) is a face of \(P' \).

(c) Do these these statements still necessarily hold if \(P \) is an unbounded polyhedron? (2+2+1 points)

5. Prove that any set \(X \subseteq \mathbb{R}^n \) with \(|X| > n + 1 \) can be decomposed into subsets \(X_1 \) and \(X_2 \) such that \(\text{conv}(X_1) \cap \text{conv}(X_2) \neq \emptyset \). (4 points)

Due date: Thursday, May 2, 2019, before the lecture.