Exercise Set 11

Exercise 11.1. Let G = (V, E) be an undirected graph with non-negative weights $w : V \to \mathbb{R}$, a set of sinks $T \subset V$, and a root vertex $r \in V \setminus T$. Additionaly, we are given required arrival times $rat : T \to \mathbb{R}$. The goal of the DELAY BOUNDED STEINER TREE PROBLEM is to compute a steiner tree S of $\{r\} \cup T$ in G with minimum weight, such that for each $t \in T$ the length of the unique r-t path in S is at most rat(t). Assuming $P \neq NP$, show that there is no $\log(|T|)$ approximation algorithm for this problem.

Hint: You may use that it is NP hard to find a log(n) approximation for SET COVER.

(5 points)

Exercise 11.2. Let $t_1, ..., t_n \in \mathbb{R}^2_{>0}, r \coloneqq (0,0) \in \mathbb{R}^2, d(x,y) \coloneqq ||x-y||_1$.

- (a) Show that there exists a perfect matching on $t_1, ..., t_n$ with length at most that of a steiner arborescence on $t_1, ..., t_n$ rooted in r.
- (b) Describe a polynomial time algorithm that computes a $\mathcal{O}(log(n))$ approximation for a minimum length Steiner arborescence on $t_1, ..., t_n$ rooted in r, such that the length of each r- t_i path is $||r t_i||_1$ (i = 1, ..., n).

(2+3 points)

Exercise 11.3. Let $\alpha > 1$ and $1 \leq \beta < 1+2/(\alpha-1)$. Construct a connected, planar graph G with $w : E(G) \to \mathbb{R}_+$ and $r \in V(G)$ that contains no spanning tree T with the following properties:

- (a) For each $v \in V(G)$: $\operatorname{dist}_{w,T}(r,v) \leq \alpha \cdot \operatorname{dist}_{w,G}(r,v)$.
- (b) For a minimum-spanning tree $M: \sum_{e \in E(T)} w(e) \leq \beta \cdot \sum_{e \in E(M)} w(e)$.

(5 points)

Chip Design	Prof. Dr. Stephan Held
Summer Term 2019	Benjamin Klotz, M. Sc.

Exercise 11.4. Given a power consumption $P_l > 0$ for each buffer $l \in L$, extend the algorithm by van Ginneken from the lecture to obtain a PTAS for the problem of finding an assignment of buffers such that all required arrival times are met and power is minimized.

- (a) First assume that for all $l \in L$, both P_l and $\frac{1}{P_l}$ are polynomially bounded in the input size.
- (b) Then solve the general case using binary search.

(3+2 points)

Deadline: Tuesday, July 2nd, before the lecture. The websites for lecture and exercises can be found at:

```
http://www.or.uni-bonn.de/lectures/ss19/chipss19.html
```

In case of any questions feel free to contact me at klotz@or.uni-bonn.de.