Exercise Set 7

Exercise 7.1. The GRIDDED PLACEMENT PROBLEM is an extension of the STANDARD PLACEMENT PROBLEM with a grid $\Gamma = \Gamma_x \times \Gamma_y$ where $\Gamma_z := \{k \cdot \delta_z : k \in \mathbb{Z}\}$ with $\delta_z \in \mathbb{Z}$ for $z \in \{x, y\}$. In this variant, the lower left corner of each circuit is required to be in Γ .

Prove that the GRIDDED PLACEMENT PROBLEM is NP-hard even if an optimum solution of the associated ungridded placement problem is known. (5 points)

Exercise 7.2. Prove that unless P = NP, there is no polynomial time n^{α} approximation algorithm for the QUADRATIC ASSIGNMENT PROBLEM for any $\alpha < 1$ even if $w \equiv 1, c \equiv 0, d$ is metric and G is a tree.

(5 points)

Exercise 7.3. Consider an instance of the MULTISECTION PROBLEM with k regions and a feasible fractional assignment. Prove that there is an integral partition which violates capacity constraints by at most

$$\frac{k-1}{k} \max \left\{ \operatorname{size}(C) : C \in \mathcal{C} \right\}.$$
(5 points)

Exercise 7.4. Consider the fractional MULTISECTION PROBLEM with k = 2 regions. Provide an alternative, simple (not using network flows) $\mathcal{O}(n \log n)$ algorithm that computes an optimum fractional partition with the additional property that all but one circuit are assigned to only one region.

(5 points)

Deadline: Mai 23rd, before the lecture. The websites for lecture and exercises can be found at:

http://www.or.uni-bonn.de/lectures/ss19/chipss19.html

In case of any questions feel free to contact me at klotz@or.uni-bonn.de.