Exercise Set 3

Exercise 3.1. Assume unit B_2 -circuit-delay and zero wire-delay.

(a) Show that for n inputs with arrival times $t_i \in \mathbb{N}$ (i = 1, ..., n) there are n-ary AND, OR or XOR circuits over B_2 with delay $d \in \mathbb{N}$ if and only if

$$\sum_{i=1}^{n} 2^{t_i - d} \le 1.$$

(b) Provide an algorithm that finds such a circuit in $\mathcal{O}(n \log n)$ time.

(3+2 points)

Exercise 3.2. Let $n = 2^k$ for $k \in \mathbb{N}$ and a, b two *n*-bit numbers representing $|a|, |b| \in \mathbb{N}$. Define $f^n \in B_{2n,2n}$ as $f^n(a,b) := |a| \cdot |b|$ i.e. the product of two naturals.

- (a) A *bit-shift* is a multiplication by 2^i for $i \in \mathbb{N}$. Show that $|a| \cdot |b|$ can be expressed in terms of at most 3 non-bit-shift multiplications of $\frac{n}{2}$ -bit numbers, 6 additions of 2n-bit numbers, and several bit-shifts.
- (b) Show $S(n) \leq 3 \cdot S(\frac{n}{2}) + cn$ and $D(n) \leq D(\frac{n}{2}) + d \cdot \log_2 n$ for constants c and d.
- (c) Let $\Omega := \{\wedge, \lor, \oplus\}$. Show $S_{\Omega}(f^n) = \mathcal{O}(n^{\log_2 3})$ and $D_{\Omega}(f^n) = \mathcal{O}(\log_2^2 n)$ for circuits with fanout 2.

(1 + 3 + 3 points)

Exercise 3.3. Let (G, c, T) be an instance of the STEINER TREE PROBLEM, G connected, $t \in T$ a terminal and $k \in \mathbb{N}$ with $k \ge 1$.

(a) For two valid lower bounds lb_a and lb_b , define max (lb_a, lb_b) by

 $\max(\mathrm{lb}_a, \mathrm{lb}_b)(v, I) := \max\left(\mathrm{lb}_a(v, I), \mathrm{lb}_b(v, I)\right).$

Show that $\max(lb_a, lb_b)$ also defines a valid lower bound.

- (b) Prove that $lb_{BB}(v, I) := BB(\{v\} \cup I)$ is a valid lower bound for instances of the RECTILINEAR STEINER TREE PROBLEM.
- (c) Show that $lb_{mst}(v, I) := \frac{mst(\{v\} \cup I)}{2}$ defines a valid lower bound.
- (d) Define $\operatorname{lb}_k(v, I) := \max \left\{ \operatorname{smt}(J) \mid t \in J \subseteq I \cup \{v\}, |J| \le k+1 \right\}$ if $t \in I$ and $\operatorname{lb}_k(v, I) := 0$ otherwise. Show that lb_k is a valid lower bound.

(3 + 1 + 1 + 3 points)

Deadline: April 25th, before the lecture. The websites for lecture and exercises can be found at:

http://www.or.uni-bonn.de/lectures/ss19/chipss19.html

In case of any questions feel free to contact me at klotz@or.uni-bonn.de.