Exercise Set 2

Exercise 2.1. A Boolean function $f \in B_n$ depends essentially on all its variables if for every $1 \le i \le n$ the subfunctions $f|_{x_i=0}$ and $f|_{x_i=1}$ are different.

Let $f \in B_n$ be a function that essentially depends on all its variables. Show:

- (a) $S_{B_2}(f) \ge n-1$,
- (b) $D_{B_2}(f) \ge \lceil \log_2 n \rceil$.

(5 points)

Exercise 2.2. Define a class of functions $(f_n)_{n \in \mathbb{N}}$ such that $f_n \in B_n$ and their SOP representations have size $\Omega(2^n)$.

(5 points)

Exercise 2.3. In this exercise we want to construct a B_2 circuit, based on the Kogge-Stone prefix graph, that computes c_{n+1}, c_i from x_i, y_i $(i = 1, ..., n \ge 4)$. We consider its size, depth, and fanout as a B_2 -circuit. E.g. the $(B_2$ -)size of a single prefix gate (as presented in the lecture) is 3 while its $(B_2$ -)depth is 2.

- (a) What is the fanout of the Kogge-Stone prefix graph as presented in the lecture when implemented as a B_2 -circuit.
- (b) Show that the Kogge Stone prefix graph can be implemented as a B_2 -circuit with depth $2\log(n) + 1$, size $\leq 4(n\log(n) n/2)$, and fanout 2.
- (c) Show that there exists an adder of depth $\leq 2\log(n) + 4\lceil \log(\log(n)) \rceil + 1$, size $\leq 10n$, and fanout 2.

(1 + 2 + 2 points)

Exercise 2.4. Let $f \in B_n$ be a Boolean function given as an oracle (i.e. for each $x \in \{0,1\}^n$ the value f(x) can be computed in $\mathcal{O}(1)$ time). Show that the set PI(f) of all prime implicants can be computed in $\mathcal{O}(n^23^n)$ time. (5 points) **Deadline:** April 18th, before the lecture. The websites for lecture and exercises can be found at:

http://www.or.uni-bonn.de/lectures/ss19/chipss19.html

In case of any questions feel free to contact me at klotz@or.uni-bonn.de.