Exercise Set 12

Exercise 12.1. Describe a polynomial-time algorithm which optimally solves any instance of the Traveling Salesman Problem that is the metric closure of a weighted tree.

Exercise 12.2. Let c_{0} be the value of an optimal solution of an instance of the Metric TSP and c_{1} the cost of a second-shortest tour (note that this tour might have the same cost as the first one). Show that

$$
\frac{c_{1}-c_{0}}{c_{0}} \leq \frac{2}{n} .
$$

Exercise 12.3. Show that the following problem is NP-complete: Given a graph G and a Hamiltonian cycle C in G, is there a Hamiltonian cycle $C^{\prime} \neq C$?

Exercise 12.4. Let $V \subset \mathbb{R}^{2}$ be an instance of the Euclidean TSP and let T be a tour for V. Prove that for any line segment l of length s not containing any point of V, there is a tour for V whose length exceeds the length of T by at most $3 s$ and which crosses l at most twice.

Deadline: Tuesday, July $2^{\text {nd }}$, before the lecture. The websites for lecture and exercises can be found at:

```
http://www.or.uni-bonn.de/lectures/ss19/appr_ss19_ex.html
```

In case of any questions feel free to contact me at rockel@or.uni-bonn.de.

