Exercise Set 9

Exercise 9.1. Consider the restriction \(P \) of the unweighted Vertex Cover Problem to graphs where the maximum degree of every vertex is bounded by a constant \(B \).

Let \(\varepsilon > 0 \). Show: If there exists a polynomial time approximation algorithm for the Steiner Tree Problem with performance ratio \(1 + \varepsilon \), then there exists a polynomial time approximation algorithm for problem \(P \) with performance ratio \(1 + (B + 1)\varepsilon \).

(4 points)

Exercise 9.2. Let \(G = (V, E) \) be a graph with non-negative edge costs, and let \(S \subseteq V \) and \(R \subseteq V \) be disjoint vertex sets (“senders” and “receivers”). Consider the problem of finding a minimum cost subgraph of \(G \) that contains a path connecting each receiver to a sender.

(a) Prove that the restriction of this problem to instances with \(S \cup R = V \) is in \(P \).

(b) Prove that this problem is NP-hard and give a 2-factor approximation algorithm.

(2+2 points)

Exercise 9.3. Give an \(O(n^3t^2) \) algorithm for the Steiner Tree Problem in planar graphs with all terminals lying on the outer face, where \(n \) is the number of vertices and \(t \) the number of terminals.

(Hint: Modify the Dreyfus-Wagner algorithm.)

(4 points)
Exercise 9.4. Consider the following algorithm for the Steiner Tree Problem with 3 terminals v_1, v_2 and v_3: Find a shortest path P between v_1 and v_2 and let a be the distance of v_3 to P. Then find a vertex z minimizing $\sum_{i=1}^{3} dist(v_i, z)$ under the conditions

(i) $dist(v_i, z) \leq dist(v_1, v_2)$ for $i \in \{1, 2\}$ and

(ii) $dist(v_3, z) \leq a$.

The algorithm returns the union of the shortest paths from z to the terminals. Show that the algorithm needs $O(|E| + |V| \log(|V|))$ time and works correctly.

(4 points)

Deadline: Tuesday, June 4th, before the lecture. The websites for lecture and exercises can be found at:

http://www.or.uni-bonn.de/lectures/ss19/appr_ss19_ex.html

In case of any questions feel free to contact me at rockel@or.uni-bonn.de.