Exercise Set 8

We want to analyze Shallow-Light trees.
Definition. For a undirected graph G, a root $r \in V(G)$ and a metric length function $d: E(G) \rightarrow \mathbb{R}_{\geq 0}$, we denote for $s, t \in V(G)$ by $\operatorname{dist}_{G, d}(s, t)$ the length of a shortest s-t-path w.r.t. d in G.
Definition. A (α, β)-Shallow-Light tree (SLT) for an undirected graph G with metric distances $d: E(G) \rightarrow \mathbb{R}_{\geq 0}$ and a root $r \in V(G)$, is a spanning tree T in G with cost at most $\alpha \cdot \operatorname{MST}(G)$ and for each $v \in V(G)$, the unique r - v-path in T has length at most $\beta \cdot \operatorname{dist}_{G, d}(r, v)$.

Exercise 8.1.

(i) Let $\beta>1$. Show that finding $(1, \beta)$-SLTs is NP-hard.
(Hint: Use a reduction from 3-Sat.)
(ii) For given $\beta>1$ and $1 \leq \alpha<1+\frac{2}{\beta-1}$, construct (G, d, r), such that there is no (α, β)-SLT for G.
(iii) Let $\beta>1$ and $1 \leq \alpha<1+\frac{2}{\beta-1}$. Show that finding (α, β)-SLTs is NP-hard. (Hint: Use the graph from (ii) to modify an instance of the problem from (i) in order to reduce (i) to this problem.)

$$
(3+2+2 \text { points })
$$

The above bounds are tight:
Exercise 8.2. Give a polynomial time algorithm that computes a $\left(1+\frac{2}{\beta-1}, \beta\right)$-SLT.
(Hint: Start with an minimum spanning tree and replace excessively long paths by shortest paths.)
(5 points)

Deadline: Tuesday, May $28^{\text {th }}$, before the lecture. The websites for lecture and exercises can be found at:
http://www.or.uni-bonn.de/lectures/ss19/appr_ss19_ex.html

In case of any questions feel free to contact me at rockel@or.uni-bonn.de.

